Show that the map is continuous

  • Thread starter Thread starter Interior
  • Start date Start date
  • Tags Tags
    Continuous Map
Interior
Messages
2
Reaction score
0

Homework Statement



Consider the map F: R^3 →R^2 given by F(x,y,z)= ( 0.5⋅(e^(x)+x) , 0.5⋅(e^(x)-x) ) is continuous.

Homework Equations

The Attempt at a Solution


[/B]
I want to use the definition of continuity which involves the preimage:

""A function f defined on a metric space A and with values in a metric space B is continuous if and only if f^(-1)(O) is an open subset of A for any open subset O of B."

I think that we can somehow use the concept of a ball around a given point in the image and preimage.
In our case our goal is to show that F^(-1) is open, i.e. we want to show that for some radius δ>0 we can make a an open ball around any given point x∈F^(-1). If this can be done for ∀x∈F^(-1) then F^(-1) is open.

a) A ball around a point P(x,y,z)=(a,b,c) in R^3 is given by (x-a)^2 + (y-b)^2 + (z-b)^2 < δ^2 .
b) This ball is sent to R^2 by the map F creating the ball (circle) with center in F(a,b,c) and radius ε>0.

I need help connecting the information in a) with the information in b).

Thanks.

 
Physics news on Phys.org
Interior said:
I need help connecting the information in a) with the information in b).
You need to show that for a given ε you can find a δ such that the image of the ball radius δ lies inside the ball radius ε.
 
Interior said:

Homework Statement



Consider the map F: R^3 →R^2 given by F(x,y,z)= ( 0.5⋅(e^(x)+x) , 0.5⋅(e^(x)-x) ) is continuous.

Homework Equations

The Attempt at a Solution


[/B]
I want to use the definition of continuity which involves the preimage:

""A function f defined on a metric space A and with values in a metric space B is continuous if and only if f^(-1)(O) is an open subset of A for any open subset O of B."

I think that we can somehow use the concept of a ball around a given point in the image and preimage.
In our case our goal is to show that F^(-1) is open, i.e. we want to show that for some radius δ>0 we can make a an open ball around any given point x∈F^(-1). If this can be done for ∀x∈F^(-1) then F^(-1) is open.

a) A ball around a point P(x,y,z)=(a,b,c) in R^3 is given by (x-a)^2 + (y-b)^2 + (z-b)^2 < δ^2 .
b) This ball is sent to R^2 by the map F creating the ball (circle) with center in F(a,b,c) and radius ε>0.

I need help connecting the information in a) with the information in b).

Thanks.
In ##R^n,## the metrics ##l_1## and ##l_2## are "equivalent" in the sense that there exist constants ##r, s## such that ##||x||_1 \leq r ||x||_2## and ##||x||_2 \leq s ||x||_1##. Thus, characterizing continuity using open balls or open cubes can be done interchangeably.
 
Last edited:
Haruspex, yes I know that, but I simply don't know how to do that.
Can you give some clues?
 
Interior said:
Haruspex, yes I know that, but I simply don't know how to do that.
Can you give some clues?
Start with a point within δ of (x,y,z) and see what bounds you can put on where it maps to.
If (x-a)^2 + (y-b)^2 + (z-b)^2 < δ^2, what can you say about |x-a| etc. individually?
 
Interior said:
Haruspex, yes I know that, but I simply don't know how to do that.
Can you give some clues?
Look at post #3.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top