Showing a metric space is complete

chipotleaway
Messages
174
Reaction score
0

Homework Statement


Show the space of all space of all continuous real-valued functions on the interval [0, a] with the metric d(x,y)=sup_{0\leq t\leq a}e^{-Lt}|x(t)-y(t)| is a complete metric space.

The Attempt at a Solution


Spent a few hours just thinking about this question, trying to prove it directly from the definition that says a complete metric space is one where every Cauchy sequence in it has a limit in the space.

I started with an arbitrary Cauchy sequence of functions d(x_m, x_n)=sup_{0\leq t\leq a}e^{-Lt}|x_m(t)-x_n(t)|...that's it! I don't know how to find this limit and show that the sequence converges to that.
 
Physics news on Phys.org
Try to show that your sequence converges pointswise. So show that for every ##t##, the sequence ##(x_n(t))_n## converges to some real number which I denote by ##x(t)##. Then show that ##x## defined like this is continuous and that ##x_n\rightarrow x## in your metric.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top