I Showing Determinant of Metric Tensor is a Tensor Density

AndersF
Messages
27
Reaction score
4
TL;DR Summary
I'm trying to show that the determinant ##g \equiv \det(g_{ij})## of the metric tensor is a tensor density.
I'm trying to show that the determinant ##g \equiv \det(g_{ij})## of the metric tensor is a tensor density. Therefore, in order to do that, I need to show that the determinant of the metric tensor in the new basis, ##g'##, would be given by

##g'=\operatorname{sgn}\bigg(\big(\det(C)\big)\bigg)\big(\det(C)\big)^wg \quad \quad \quad (1)##

With ##C=(C^a_b)_{n \times n}## the change-of-basis matrix.

I know that the metric tensor transforms under a change of basis in this way

##\tilde{g}_{i j}=C_{i}^{\alpha} C_{j}^{\beta} g_{\alpha \beta} \quad \quad \quad (2)##

I see that if I could identify in this last equation (2) a matrix multiplication, then I could use the properties of the determinants to get something similar to equation (1). But I'm stuck here, since these terms don't have the form of "classical" matrix multiplications, ##P^i_j=M^i_k N^k_j##.

Could somebody give me a hint on how to accomplish this demonstration?
 
Last edited:
Physics news on Phys.org
In matrix notation you can write ##\mathrm{det} \tilde{g}=\mathrm{det}(C^{\text{T}} g C)=(\mathrm{det} C)^2 \mathrm{det} g##. So ##g_{\mu \nu}## is a tensor density of weight 2.
 
To add: in linear algebra one has the cyclic identity det(ABC)=det(BCA)=det(CAB), and det(A^T)=det(A) ;)

Edit: typo corrected, thnx robphy!
 
Last edited:
  • Like
Likes vanhees71 and AndersF
haushofer said:
To add: in linear algebra one has the cyclic identity det(ABC)=det(BCA)=det(CBA), and det(A^T)=det(A) ;)
Typo: The third expression in this cyclic identity should be det(CAB).
 
  • Like
Likes vanhees71, haushofer and AndersF
vanhees71 said:
In matrix notation you can write ##\mathrm{det} \tilde{g}=\mathrm{det}(C^{\text{T}} g C)=(\mathrm{det} C)^2 \mathrm{det} g##. So ##g_{\mu \nu}## is a tensor density of weight 2.
haushofer said:
To add: in linear algebra one has the cyclic identity det(ABC)=det(BCA)=det(CAB), and det(A^T)=det(A) ;)

Edit: typo corrected, thnx robphy!

Ok, these were just the "tricks" I was looking for, thank you very much!
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top