I Showing Determinant of Metric Tensor is a Tensor Density

AndersF
Messages
27
Reaction score
4
TL;DR Summary
I'm trying to show that the determinant ##g \equiv \det(g_{ij})## of the metric tensor is a tensor density.
I'm trying to show that the determinant ##g \equiv \det(g_{ij})## of the metric tensor is a tensor density. Therefore, in order to do that, I need to show that the determinant of the metric tensor in the new basis, ##g'##, would be given by

##g'=\operatorname{sgn}\bigg(\big(\det(C)\big)\bigg)\big(\det(C)\big)^wg \quad \quad \quad (1)##

With ##C=(C^a_b)_{n \times n}## the change-of-basis matrix.

I know that the metric tensor transforms under a change of basis in this way

##\tilde{g}_{i j}=C_{i}^{\alpha} C_{j}^{\beta} g_{\alpha \beta} \quad \quad \quad (2)##

I see that if I could identify in this last equation (2) a matrix multiplication, then I could use the properties of the determinants to get something similar to equation (1). But I'm stuck here, since these terms don't have the form of "classical" matrix multiplications, ##P^i_j=M^i_k N^k_j##.

Could somebody give me a hint on how to accomplish this demonstration?
 
Last edited:
Physics news on Phys.org
In matrix notation you can write ##\mathrm{det} \tilde{g}=\mathrm{det}(C^{\text{T}} g C)=(\mathrm{det} C)^2 \mathrm{det} g##. So ##g_{\mu \nu}## is a tensor density of weight 2.
 
To add: in linear algebra one has the cyclic identity det(ABC)=det(BCA)=det(CAB), and det(A^T)=det(A) ;)

Edit: typo corrected, thnx robphy!
 
Last edited:
  • Like
Likes vanhees71 and AndersF
haushofer said:
To add: in linear algebra one has the cyclic identity det(ABC)=det(BCA)=det(CBA), and det(A^T)=det(A) ;)
Typo: The third expression in this cyclic identity should be det(CAB).
 
  • Like
Likes vanhees71, haushofer and AndersF
vanhees71 said:
In matrix notation you can write ##\mathrm{det} \tilde{g}=\mathrm{det}(C^{\text{T}} g C)=(\mathrm{det} C)^2 \mathrm{det} g##. So ##g_{\mu \nu}## is a tensor density of weight 2.
haushofer said:
To add: in linear algebra one has the cyclic identity det(ABC)=det(BCA)=det(CAB), and det(A^T)=det(A) ;)

Edit: typo corrected, thnx robphy!

Ok, these were just the "tricks" I was looking for, thank you very much!
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top