Showing That $\frac{d}{d_a} F_a(\hat{X}) \cdot \psi = F'(x) \psi$ at a=0

John Greger
Messages
34
Reaction score
1

Homework Statement


Consider the operator ##F_a(\hat{X}) =e^{ia \hat{p} / \hbar} \cdot F(\hat{X}) e^{-ia \hat{p} / \hbar}## where a is real.

Show that ##\frac{d}{d_a} F_a(\hat{X}) \cdot \psi = F'(x) \psi## evaluated at a=0.

And what is the interpretation of the operator e^{i \hat{p_a} / \hbar}?

The Attempt at a Solution


By just starting taking the derivative I find that,
## \frac{d}{d_a} F_a(\hat{X}) = (\frac{i \hat{p}}{ \hbar}) e^{ia \hat{p} / \hbar} \cdot F(\hat{X}) e^{-ia \hat{p} / \hbar} - e^{ia \hat{p} / \hbar} \cdot F(\hat{X}) (\frac{i \hat{p}}{\hbar}) e^{-ia \hat{p} / \hbar} ##

Plugging a=0 gives,

## \frac{i}{h}[ \hat{p}, \hat{F}]##. But how do I take it from here to get the required form?And finally, what is the interpretation of ##e^{i \hat{p_a} / \hbar}##?
Thanks in advance!
 
Physics news on Phys.org
John Greger said:
But how do I take it from here to get the required form?
Are you perhaps familiar with some commutation relation involving the argument of ##\hat F##?

John Greger said:
And finally, what is the interpretation of ei^pa/ℏeipa^/ℏe^{i \hat{p_a} / \hbar}?
What are your thoughts?
 
Orodruin said:
Are you perhaps familiar with some commutation relation involving the argument of ^FF^\hat F?
If the operators are hermitian I know they commute, but other than that it dosen't ring a bell.
 
John Greger said:
If the operators are hermitian I know they commute, but other than that it dosen't ring a bell.
This is not correct. Hermitian operators need not commute. Just look at, just off the top of my head for no apparent reason whatsoever, say ##\hat x## and ##\hat p## ...
 
Orodruin said:
This is not correct. Hermitian operators need not commute. Just look at, just off the top of my head for no apparent reason whatsoever, say ##\hat x## and ##\hat p## ...
Okey. Anyway I'm pretty stuck at the problem. I only get as far as in my attempt of solution.
 
Insertion gives
$$
\frac{i}{\hbar}[\hat p, F(\hat x)]\psi,
$$
which means that you now need to show that ##(i/\hbar)[\hat p, F(\hat x)] = F'(\hat x)##. The absolutely easiest way to do that is via the commutation relation between ##\hat p## and ##\hat x##.
 
Last edited by a moderator:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top