Silly u-substitution mistake happening somewhere

  • Thread starter Thread starter Flammadeao
  • Start date Start date
  • Tags Tags
    Mistake
Flammadeao
Messages
4
Reaction score
0

Homework Statement



\int\frac{sin(2x)}{1+cos(x)^2}


Homework Equations


None?



The Attempt at a Solution



I know I can use a trig identity to end up with a numerator of -- 2sin(x)cos(x)

So:


\int\frac{2sin(x)cos(x)}{1+cos(x)^2}



I am using u=1+cos(x)^2 and du=-2sin(x)dx

Substitute in and I end up with

\int\frac{-cos(x)}{u}du

And that's where I hit a wall, because I still have a cos(x) in there. Anyone willing to offer hints on this one? Thanks much!
 
Physics news on Phys.org
Try u=cos^2(x).
 
Oh man, that would make sense... Gah, thankyou :)
 
Flammadeao said:
I am using u=1+cos(x)^2 and du=-2sin(x)dx

If u=1+\cos^2(x) then du \neq -2\sin(x)\;dx

It would be du=-2\sin(x)\cos(x)\;dx

--Elucidus
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top