James889
- 190
- 1
Hai,
I have the easiest problem but I am stuck at the last step, simplification.
\frac{cos3x+sin3x}{cos3x-sin3x}
\begin{aligned}<br /> F(x) = cos(3x)+sin(3x)\\<br /> F'(x) = -3sin(3x)+3cos(3x) \\<br /> G(x) = cos(3x)-sin(3x) \\<br /> G'(x) = -3sin(3x)-3cos(3x)\end{aligned}<br />
This gives \frac{(-3sin(3x)+3cos(3x))*(cos(3x)-sin(3x))+(cos(3x)+sin(3x))*(cos(3x)-sin(3x))}{(cos(3x)-sin(3x))^2}
But how would i simplify this?
I have the easiest problem but I am stuck at the last step, simplification.
\frac{cos3x+sin3x}{cos3x-sin3x}
\begin{aligned}<br /> F(x) = cos(3x)+sin(3x)\\<br /> F'(x) = -3sin(3x)+3cos(3x) \\<br /> G(x) = cos(3x)-sin(3x) \\<br /> G'(x) = -3sin(3x)-3cos(3x)\end{aligned}<br />
This gives \frac{(-3sin(3x)+3cos(3x))*(cos(3x)-sin(3x))+(cos(3x)+sin(3x))*(cos(3x)-sin(3x))}{(cos(3x)-sin(3x))^2}
But how would i simplify this?