Simple differentiation problem, brainfart

  • Thread starter Thread starter James889
  • Start date Start date
  • Tags Tags
    Differentiation
James889
Messages
190
Reaction score
1
Hai,

I have the easiest problem but I am stuck at the last step, simplification.

\frac{cos3x+sin3x}{cos3x-sin3x}

\begin{aligned}<br /> F(x) = cos(3x)+sin(3x)\\<br /> F&#039;(x) = -3sin(3x)+3cos(3x) \\<br /> G(x) = cos(3x)-sin(3x) \\<br /> G&#039;(x) = -3sin(3x)-3cos(3x)\end{aligned}<br />

This gives \frac{(-3sin(3x)+3cos(3x))*(cos(3x)-sin(3x))+(cos(3x)+sin(3x))*(cos(3x)-sin(3x))}{(cos(3x)-sin(3x))^2}

But how would i simplify this?
 
Physics news on Phys.org
Expand the quadratics and look for identities. Already I can find sin^2 + cos^2 identities on both the top and bottom.
 
Also, it will help to remember that sin(u)cos(u) = (1/2)sin(2u)
 
Okay, after some more trying:

I was able to reduce the first part(-3sin(3x)+3cos(3x))(cos(3x)-sin(3x))
Down to:
-3sin(3x)*cos(3x) + 3 -3cos(3x)*sin(3x)

And the second part:(cos(3x)+sin(3x))*(cos(3x)-sin(3x))
Down to:
cos(3x)^{2}-sin(3x)^{2}-2sin(3x)cos(3x)

Is that any better?
 
James889 said:
Okay, after some more trying:

I was able to reduce the first part(-3sin(3x)+3cos(3x))(cos(3x)-sin(3x))
Down to:
-3sin(3x)*cos(3x) + 3 -3cos(3x)*sin(3x)

And the second part:(cos(3x)+sin(3x))*(cos(3x)-sin(3x))
Down to:
cos(3x)^{2}-sin(3x)^{2}-2sin(3x)cos(3x)

Is that any better?

Take note of AUMathtutor's comment
 
Also, naturally,

cos(u)^{2} - sin(u)^{2} = cos(2u)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top