I Simple Modules and quotients of maximal modules, Bland Ex 13

  • I
  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Modules
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am focused on Chapter 1, Section 1.4 Modules ... ...

I need help with the proving a statement Bland makes in Example 13 ... ...

Example 13 reads as follows:
?temp_hash=163dad38af054a70ffbbb915d74f3af9.png

In the above text from Bland, we read the following:

" ... If ##N## is a maximal submodule of ##M##, then it follows that ##M/N## is a simple ##R##-module ... ... "I do not understand why this is true ... can anyone help with a formal proof of this statement ...
Hope someone can help ...

Peter
 

Attachments

  • Bland - Example 13 - Page 30, Ch. 1 ... ....png
    Bland - Example 13 - Page 30, Ch. 1 ... ....png
    14.7 KB · Views: 619
Physics news on Phys.org
What are the submodules of ##M/N\,##? And what is the zero element in this factor module?
 
fresh_42 said:
What are the submodules of ##M/N\,##? And what is the zero element in this factor module?
Hi fresh_42 ...

I cannot answer you with confidence ... which is probably why I do not follow Bland Example 13 ... but ...

The elements of ##M/N## are the cosets ##\{ x + N \}_{ x \in M }## where ##x + N = \{ x + n \ | \ n \in N \}## ... ...

... BUT? ... what are the submodules of ##M/N## ... I am unsure ...

Zero element would be ##N = \{ 0 + N \}## ...

Can you help further ... ?

Peter
 
Math Amateur said:
Hi fresh_42 ...

I cannot answer you with confidence ... which is probably why I do not follow Bland Example 13 ... but ...

The elements of ##M/N## are the cosets ##\{ x + N \}_{ x \in M }## where ##x + N = \{ x + n \ | \ n \in N \}## ... ...

... BUT? ... what are the submodules of ##M/N## ... I am unsure ...

Zero element would be ##N = \{ 0 + N \}## ...

Can you help further ... ?

Peter
Yes, exactly. But zero is in any submodule. So a submodule of ##M/N## as a set ##S := \{x + N \,\vert \, x \in \textrm{ something }\}## has to contain ##N##. Now ##N \subseteq S \subseteq M## is maximal, so ##S## is either equal to ##M## or equal to ##N##. But this means ##S/N = M/N## or ##S/N=N/N=\{0\}## which is the definition of a simple module: ##M/N## has no proper submodules ##S/N##.
 
  • Like
Likes Math Amateur
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top