Simple Partial Differentiation problem

Saitama
Messages
4,244
Reaction score
93

Homework Statement


If ##z=x\ln(x+r)-r## where ##r^2=x^2+y^2##, prove that
$$\frac{∂^2z}{∂x^2}+\frac{∂^2z}{∂y^2}=\frac{1}{x+y}$$

Homework Equations


The Attempt at a Solution


Since ##r^2=x^2+y^2##, ##∂r/∂x=x/r## and ##∂r/∂y=y/r##.
Differentiating z w.r.t x partially,
$$\frac{∂z}{∂x}=\ln(x+r)+x\cdot\left(\frac{1}{x+r}\right)\cdot \left(1+\frac{∂r}{∂x}\right)-\frac{∂r}{∂x}$$
Using ##∂r/∂x=x/r##
$$\frac{∂z}{∂x}=\ln(x+r)$$
$$\frac{∂^2z}{∂x^2}=\frac{1}{x+r}\cdot\left(1+\frac{x}{r}\right)=\frac{1}{r}$$

Differentiating z w.r.t y partially,
$$\frac{∂z}{∂y}=\frac{x}{x+r}\cdot \frac{∂r}{∂y}-\frac{∂r}{∂y}=\frac{∂r}{∂y}\cdot \frac{-r}{x+r}$$
Using ##∂r/∂y=y/r##
$$\frac{∂z}{∂y}=\frac{-y}{x+r}$$
$$\frac{∂^2z}{∂y^2}=-\frac{(x+r)-y(∂r/∂y)}{(x+r)^2}=-\frac{rx+r^2-y^2}{r(x+r)^2}$$
Since ##r^2-y^2=x^2##
$$\frac{∂^2z}{∂y^2}=-\frac{x}{r(x+r)}$$
Adding the second order derivatives,
$$\frac{∂^2z}{∂x^2}+\frac{∂^2z}{∂y^2}=\frac{1}{r}-\frac{x}{r(x+r)}=\frac{1}{x+r}$$
Where did I go wrong? :confused:

Any help is appreciated. Thanks!
 
Physics news on Phys.org
Pranav-Arora said:

Homework Statement


If ##z=x\ln(x+r)-r## where ##r^2=x^2+y^2##, prove that
$$\frac{∂^2z}{∂x^2}+\frac{∂^2z}{∂y^2}=\frac{1}{x+y}$$


Homework Equations





The Attempt at a Solution


Since ##r^2=x^2+y^2##, ##∂r/∂x=x/r## and ##∂r/∂y=y/r##.
Differentiating z w.r.t x partially,
$$\frac{∂z}{∂x}=\ln(x+r)+x\cdot\left(\frac{1}{x+r}\right)\cdot \left(1+\frac{∂r}{∂x}\right)-\frac{∂r}{∂x}$$
Using ##∂r/∂x=x/r##
$$\frac{∂z}{∂x}=\ln(x+r)$$
$$\frac{∂^2z}{∂x^2}=\frac{1}{x+r}\cdot\left(1+\frac{x}{r}\right)=\frac{1}{r}$$

Differentiating z w.r.t y partially,
$$\frac{∂z}{∂y}=\frac{x}{x+r}\cdot \frac{∂r}{∂y}-\frac{∂r}{∂y}=\frac{∂r}{∂y}\cdot \frac{-r}{x+r}$$
Using ##∂r/∂y=y/r##
$$\frac{∂z}{∂y}=\frac{-y}{x+r}$$
$$\frac{∂^2z}{∂y^2}=-\frac{(x+r)-y(∂r/∂y)}{(x+r)^2}=-\frac{rx+r^2-y^2}{r(x+r)^2}$$
Since ##r^2-y^2=x^2##
$$\frac{∂^2z}{∂y^2}=-\frac{x}{r(x+r)}$$
Adding the second order derivatives,
$$\frac{∂^2z}{∂x^2}+\frac{∂^2z}{∂y^2}=\frac{1}{r}-\frac{x}{r(x+r)}=\frac{1}{x+r}$$
Where did I go wrong? :confused:

I don't think you have; I also get the same answer.
 
  • Like
Likes 1 person
pasmith said:
I don't think you have; I also get the same answer.

Thanks for the check pasmith! :smile:
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top