dydxforsn
- 104
- 0
I'm reading through this pdf (http://www.pa.msu.edu/~mmoore/TIPT.pdf) on simple quantum perturbation theory and I'm quite confused with equations 32 through 34.
They have E_{n}^{(2)} = <n^{(0)}|V|n^{(1)}> = - \sum_{m \neq 0}{\frac{|V_{mn}|^{2}}{E_{mn}}} but I would have done E_{n}^{(2)} = <n^{(0)}|V|n^{(1)}> - <n^{(0)}|E_{n}^{(1)}|n^{(1)}> and then plugged in E_{n}^{(1)} = V_{nn} from their earlier solution for first order terms. I don't know where I would have gone form there and I certainly couldn't even take a gander at how they end up with a summation either in this equation or in equations 33 and 34. Are there steps being omitted and/or can this be explained conceptually?
I have similar complaints about equations 33 and 34, though in equation 34 I have the first right hand side they end up with, but then again I have no idea about the summation that suddenly appears in the final answer. What am I overlooking/not thinking about?
They have E_{n}^{(2)} = <n^{(0)}|V|n^{(1)}> = - \sum_{m \neq 0}{\frac{|V_{mn}|^{2}}{E_{mn}}} but I would have done E_{n}^{(2)} = <n^{(0)}|V|n^{(1)}> - <n^{(0)}|E_{n}^{(1)}|n^{(1)}> and then plugged in E_{n}^{(1)} = V_{nn} from their earlier solution for first order terms. I don't know where I would have gone form there and I certainly couldn't even take a gander at how they end up with a summation either in this equation or in equations 33 and 34. Are there steps being omitted and/or can this be explained conceptually?
I have similar complaints about equations 33 and 34, though in equation 34 I have the first right hand side they end up with, but then again I have no idea about the summation that suddenly appears in the final answer. What am I overlooking/not thinking about?