Simplified C.D.F. Formula: Get the Answer Now!

  • Thread starter Thread starter needhelp83
  • Start date Start date
needhelp83
Messages
193
Reaction score
0
Derive a simplified formula for the c.d.f., F(n) = (P \leq n), using:

\sum_{k=0}^{n}r^k=\frac{1-r^{n+1}}{1-r}


p(n)=\alpha (1-\alpha)^n

\alpha \sum_{k=0}^{n}r^k=\frac{1-(1-\alpha)^{n+1}}{1-(1-\alpha)}

How do I break this down to a simplified version?
 
Last edited:
Physics news on Phys.org
Alright, I may have figured this out hopefully...

<br /> \alpha \sum_{k=0}^{n}r^k=\frac{1-(1-\alpha)^{n+1}}{1-(1-\alpha)} <br />

<br /> \alpha \frac{1-(1-\alpha)^{n+1}}{1-(1-\alpha)} <br />


<br /> \alpha \frac{-(1-\alpha)^{n+1}}{-1+\alpha} <br />

Is this right?


<br /> \frac{-(1-\alpha)^{n+1}}{-1} <br />


<br /> (1-\alpha)^{n+1}<br />
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top