needhelp83
- 193
- 0
Derive a simplified formula for the c.d.f., F(n) = (P \leq n), using:
\sum_{k=0}^{n}r^k=\frac{1-r^{n+1}}{1-r}
p(n)=\alpha (1-\alpha)^n
\alpha \sum_{k=0}^{n}r^k=\frac{1-(1-\alpha)^{n+1}}{1-(1-\alpha)}
How do I break this down to a simplified version?
\sum_{k=0}^{n}r^k=\frac{1-r^{n+1}}{1-r}
p(n)=\alpha (1-\alpha)^n
\alpha \sum_{k=0}^{n}r^k=\frac{1-(1-\alpha)^{n+1}}{1-(1-\alpha)}
How do I break this down to a simplified version?
Last edited: