MHB Simplify and state any restrictions on the variables.

Click For Summary
The discussion focuses on simplifying the expression $$\frac{2(x+1)}{3} ⋅ \frac{x-1}{6(x+1)}$$ and identifying restrictions on the variable. The initial simplification attempt incorrectly reduced the expression without fully simplifying the fraction $$\frac{2}{18}$$. A key mistake was not recognizing that the term $(x+1)$ in the denominator leads to division by zero when $x = -1$. The correct restrictions on the variable are that $x$ cannot equal -1, ensuring the expression remains defined. The final simplified expression should be correctly calculated to avoid errors.
eleventhxhour
Messages
73
Reaction score
0
Simplify and state any restrictions on the variables:

$$\frac{2(x+1)}{3} ⋅ \frac{x-1}{6(x+1)} $$

This is what I did, which is wrong (according to the textbook).

$$\frac{2}{3} ⋅ \frac{x-1}{6}$$

$$\frac{2x-2}{18}$$

$$\frac{2(x-1)}{18}$$

Can someone tell me what I've done wrong? Also, how would you find the restrictions?

Thanks.
 
Mathematics news on Phys.org
It appears that you simply did not simplify fully...what is:

$$\frac{2}{18}$$

fully reduced?

In the original expression, what value of $x$ will cause division by zero?
 
Ohh, I see. That was a simple mistake.
Thanks!
And the restriction would be -1.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K