A Simplifying a double summation

Click For Summary
The discussion centers on the complexity of simplifying a double summation in a given function involving error functions. Participants express skepticism about the feasibility of reducing the sums to a simpler form, noting the inherent complexity. Suggestions include removing constants that do not contribute to the sums and expressing error functions as integrals to explore potential simplifications. There is also a mention of examining the relationships between adjacent terms to facilitate summation. Overall, the conversation highlights the challenges and potential strategies for simplifying the mathematical expression.
Ad VanderVen
Messages
169
Reaction score
13
TL;DR
Simplifying a double summation.
Is it possible to simplify the function below so that the sums disappear.
$$\displaystyle g \left(x \right) \, = \, \sum _{j=-\infty}^{\infty} \left(-A +B \right) \sum _{k=-\infty}^{\infty} \frac{1}{2}~\frac{\sqrt{2}~e^{-\frac{1}{2}~\frac{\left(x -k \right)^{2}}{\sigma ^{2}}}~\left(U -V \right)}{\sigma ~\sqrt{\pi }}$$
with
$$\displaystyle A\, = \,1/2\,{\rm erf} \left(1/2\,{\frac { \sqrt{2} \left( -j-1/2+{\it omicron} \right) }{\rho}}\right),$$
$$\displaystyle B\, = \,1/2\,{\rm erf} \left(1/2\,{\frac { \sqrt{2} \left( -j+1/2+{\it omicron} \right) }{\rho}}\right),$$
$$\displaystyle U\, = \,1/2\,{\rm erf} \left(1/4\,{\frac { \sqrt{2} \left( -2\,bj+2\,k+1 \right) }{\tau}}\right)$$
and
$$\displaystyle V\, = \,1/2\,{\rm erf} \left(1/4\,{\frac { \sqrt{2} \left( -2\,bj+2\,k-1 \right) }{\tau}}\right)$$
 
Last edited:
Mathematics news on Phys.org
It seems very complex to me. Why do you estimate or expect that it would be reduced to a no sum form ?
 
anuttarasammyak said:
It seems very complex to me. Why do you estimate or expect that it would be reduced to a no sum form ?
I do not know.
 
Get rid of all the constants that can be taken out of the sums, they just blow up the expression for absolutely no reason.

You can express all the error functions as integrals and then see if adjacent terms have some nice relation for the boundaries that allows summation. The error function arguments look like there might be something you can combine.