epkid08
- 264
- 1
I did a problem in class today that evaluated f(t)=e^{At} for A_{2,2}=\begin{bmatrix}2&1 \\-1&4 \end{bmatrix} to a matrix form.
The answer I got was:
f(t)=\begin{bmatrix}e^{3t}-te^{3t}&te^{3t} \\-te^{3t}&e^{3t}+te^{3t} \end{bmatrix}
Factoring we have:
f(t)=e^{3t}\begin{bmatrix}1-t&t \\-t&1+t \end{bmatrix}
My question is, is there some simple general expression for simplifying e^{At} to a matrix form? Maybe something that resembles e^{tA_{2,2}}=e^{\lambda t}\begin{bmatrix}1-t&t \\-t&1+t \end{bmatrix}
but for any size matrix.
The answer I got was:
f(t)=\begin{bmatrix}e^{3t}-te^{3t}&te^{3t} \\-te^{3t}&e^{3t}+te^{3t} \end{bmatrix}
Factoring we have:
f(t)=e^{3t}\begin{bmatrix}1-t&t \\-t&1+t \end{bmatrix}
My question is, is there some simple general expression for simplifying e^{At} to a matrix form? Maybe something that resembles e^{tA_{2,2}}=e^{\lambda t}\begin{bmatrix}1-t&t \\-t&1+t \end{bmatrix}
but for any size matrix.