Simplifying Expression with Laws of Exponents

  • Thread starter Thread starter reenmachine
  • Start date Start date
  • Tags Tags
    Laws
AI Thread Summary
The discussion focuses on simplifying the expression (100^3)^(2/3) ÷ ((-10^2)/(100^(1/2)))^3 using the laws of exponents. The left side simplifies to 10^3, while the right side simplifies to -10^3. Combining these results yields -1. Participants confirm that the simplification process is correct, with a minor note on the terminology of "exponents." The overall conclusion is that the method used to simplify the expression is valid.
reenmachine
Gold Member
Messages
514
Reaction score
9

Homework Statement



Simplify the following expression:

##\frac{(100^3)^\frac{2}{3}}{1000^\frac{1}{3}}## ÷ ##\left( \frac{-10^2}{100^\frac{1}{2}} \right)^3##

Homework Equations



Start with this side: ##\frac{(100^3)^\frac{2}{3}}{1000^\frac{1}{3}}##

##\frac{((10^2)^3)^\frac{2}{3}}{(10^3)^\frac{1}{3}}##

##\frac{(10^6)^\frac{2}{3}}{10}##

##\frac{10^4}{10}##

##10^3##

We keep this and go on the right side of the expression:

##\left( \frac{-10^2}{100^\frac{1}{2}} \right)^3##

##\left( \frac{-10^2}{(10^2)\frac{1}{2}} \right)^3##

##\left( \frac{-10^2}{10} \right)^3##

##\left( \frac{-10^6}{10^3} \right)##

##-10^3##

Then we take the two results:

##\frac{10^3}{-10^3}##

##-1##

Is that a correct way to use the laws of exponants?

thank you!
 
Last edited:
Physics news on Phys.org
reenmachine said:

Homework Statement



Simplify the following expression:

##\frac{(100^3)^\frac{2}{3}}{1000^\frac{1}{3}}## ÷ ##\left( \frac{-10^2}{100^\frac{1}{2}} \right)^3##


Homework Equations



Start with this side: ##\frac{(100^3)^\frac{2}{3}}{1000^\frac{1}{3}}##

##\frac{((10^2)^3)^\frac{2}{3}}{(10^3)^\frac{1}{3}}##

##\frac{(10^6)^\frac{2}{3}}{10}##

##\frac{10^4}{10}##

##10^3##

We keep this and go on the right side of the expression:

##\left( \frac{-10^2}{100^\frac{1}{2}} \right)^3##

##\left( \frac{-10^2}{(10^2)\frac{1}{2}} \right)^3##

##\left( \frac{-10^2}{10} \right)^3##

##\left( \frac{-10^6}{10^3} \right)##

##-10^3##

Then we take the two results:

##\frac{10^3}{-10^3}##

##-1##

Is that a correct way to use the laws of exponants?

thank you!

Looks fine to me.
 
Dick said:
Looks fine to me.

thank you!
 
Minor point: the word is exponent.
 
Mark44 said:
Minor point: the word is exponent.

Oops , in french it's "exposant" , that's probably where the confusion came from.

Thank you!
 
Back
Top