pavadrin
- 154
- 0
hey
sorry to distrub you, but i was surfing the net for the triple angle of tangent trig function but could not find it so i decided to use infomation i knew to solve it. i would like to know if what i have done is correct, and if it can be simplified further, thanks. What i have done is as follows:
\<br /> \begin{array}{c}<br /> \tan 3A = \tan \left( {2A + A} \right) \\ <br /> = \frac{{\tan 2A + \tan A}}{{1 - \tan 2A\tan A}} \\ <br /> = \frac{{\left( {\frac{{2\tan A}}{{1 - \tan ^2 A}}} \right) + \tan A}}{{1 - \left( {\frac{{2\tan A}}{{1 - \tan ^2 A}}} \right) \cdot \tan A}} \\ <br /> = \frac{{\frac{{2\tan A + \left( {\tan A\left( {1 - \tan ^2 A} \right)} \right)}}{{1 - \tan ^2 A}}}}{{\frac{{\left( {1 - \tan ^2 A} \right) - 2\tan ^2 A}}{{1 - \tan ^2 A}}}} \\ <br /> = \frac{{2\tan A + \left( {\tan A\left( {1 - \tan ^2 A} \right)} \right)}}{{\left( {1 - \tan ^2 A} \right) - 2\tan ^2 A}} \\ <br /> = \frac{{2\tan A + \tan A - \tan ^3 A}}{{1 - \tan A - 2\tan ^2 A}} \\ <br /> = \frac{{3\tan A - \tan ^3 A}}{{1 - \tan A - 2\tan ^2 A}} \\ <br /> \end{array}<br /> \
thank you,
Pavadrin
sorry to distrub you, but i was surfing the net for the triple angle of tangent trig function but could not find it so i decided to use infomation i knew to solve it. i would like to know if what i have done is correct, and if it can be simplified further, thanks. What i have done is as follows:
\<br /> \begin{array}{c}<br /> \tan 3A = \tan \left( {2A + A} \right) \\ <br /> = \frac{{\tan 2A + \tan A}}{{1 - \tan 2A\tan A}} \\ <br /> = \frac{{\left( {\frac{{2\tan A}}{{1 - \tan ^2 A}}} \right) + \tan A}}{{1 - \left( {\frac{{2\tan A}}{{1 - \tan ^2 A}}} \right) \cdot \tan A}} \\ <br /> = \frac{{\frac{{2\tan A + \left( {\tan A\left( {1 - \tan ^2 A} \right)} \right)}}{{1 - \tan ^2 A}}}}{{\frac{{\left( {1 - \tan ^2 A} \right) - 2\tan ^2 A}}{{1 - \tan ^2 A}}}} \\ <br /> = \frac{{2\tan A + \left( {\tan A\left( {1 - \tan ^2 A} \right)} \right)}}{{\left( {1 - \tan ^2 A} \right) - 2\tan ^2 A}} \\ <br /> = \frac{{2\tan A + \tan A - \tan ^3 A}}{{1 - \tan A - 2\tan ^2 A}} \\ <br /> = \frac{{3\tan A - \tan ^3 A}}{{1 - \tan A - 2\tan ^2 A}} \\ <br /> \end{array}<br /> \
thank you,
Pavadrin