Finding Inner Solutions for Singular Perturbation Problems

  • Thread starter Thread starter sara_87
  • Start date Start date
  • Tags Tags
    Perturbation
sara_87
Messages
748
Reaction score
0

Homework Statement



\epsilon\frac{d^{2}u}{dx^{2}} +\frac{du}{dx} + e-x = 0

0<x<1
u(0)=0
u(1)=1

Homework Equations





The Attempt at a Solution



i want to find the inner solution first
i used the substitution x=\epsilon2y

i put that in the equation:

\epsilon\frac{1}{\epsilon}^2nu'' +\frac{1}{\epsilon}^nu' +\epsilon^n y = 0
now i have to pick a value for n... how do i do that?
 
Physics news on Phys.org
epsilon is not meant to be floating that... sorry just imagine it's in line, any help would be much appreciated thanks in advance!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top