Tolman VII singularity...
Tolman total mass equation solution VII:
M_0 = \frac{8 \pi \rho_c R^3}{15}
The minimum neutron star total radius is equivalent to the Schwarzschild radius:
\boxed{R = r_s}
Schwarzschild radius:
r_s = \frac{2G M_0}{c^2}
Integration by substitution:
M_0 = \frac{8 \pi \rho_c}{15} \left( \frac{2G M_0}{c^2} \right)^3
Schwarzschild-Tolman total mass equation solution VII:
\boxed{M_0 = \frac{c^3}{8} \sqrt{\frac{15}{\pi G^3 \rho_c}}}
Schwarzschild-Tolman total core density equation solution VII:
\boxed{\rho_c = \frac{15 c^6}{64 \pi G^3 M_0^2}}
Planck sphere singularity core density equivalent to Planck sphere density:
\boxed{\rho_c = \rho_p}
Planck sphere density:
\rho_p = \frac{3 c^5}{4 \pi \hbar G^2}
Integration by substitution:
M_0 = \frac{c^3}{8} \sqrt{\frac{15}{\pi G^3} \left( \frac{4 \pi \hbar G^2}{3 c^5} \right)} = \frac{1}{4} \sqrt{\frac{5 \hbar c}{G}} = \frac{\sqrt{5}}{4} m_ p
Schwarzschild-Tolman VII singularity total mass:
\boxed{M_0 = \frac{1}{4} \sqrt{\frac{5 \hbar c}{G}}}
Integration by substitution:
R = \frac{2G M_0}{c^2} = \frac{2G}{c^2} \left( \frac{1}{4} \sqrt{\frac{5 \hbar c}{G}} \right) = \frac{1}{2} \sqrt{\frac{5 \hbar G}{c^3}} = \frac{\sqrt{5}}{2} r_ p
Schwarzschild-Tolman VII singularity total radius:
\boxed{R = \frac{1}{2} \sqrt{\frac{5 \hbar G}{c^3}}}
[/Color]
Reference:
http://en.wikipedia.org/wiki/Schwarzschild_radius"
https://www.physicsforums.com/showpost.php?p=1718805&postcount=39"
http://en.wikipedia.org/wiki/Planck_mass"
http://en.wikipedia.org/wiki/Planck_length"