snoopies622
- 852
- 29
- TL;DR Summary
- How to calculate the size of a vector, confusion with basis vectors.
I'm stumbling on something rather basic here, will explain with an example. (Pardon the LaTeX problems, trying to fix..)
Suppose I have a plane, and in the plane I put the familiar (x,y) Cartesian coordinate system, and the metric is the usual Euclidean metric with ds^2 = dx ^2 + dy^2.
Now suppose I add into this another coordinate system defined by
u=x+2y
v=x-y
and so it follows that
x=(1/3)(u + 2v)
y=(1/3)(u-v).
The basis vectors for u and v are
\vec{e}_u = < \frac {\partial x}{\partial u},\frac {\partial y}{\partial u} > ,= < 1/3 , 1/3 >
\vec{e}_v = < \frac {\partial x}{\partial v},\frac {\partial y}{\partial v} > ,= < 2/3 , -1/3 >
and the corresponding covectors are
\bar{e}^u = < \frac {\partial u}{\partial x},\frac {\partial u}{\partial y} > ,= < 1 , 2 >
\bar{e}^v = < \frac {\partial v}{\partial x},\frac {\partial v}{\partial y} > ,= < 1 , -1 >.
The inner products of the basis vectors and covectors are
\vec{e}_u \cdot \bar{e}^u = < 1/3 , 1/3 > \cdot < 1 , 2 > =1
\vec{e}_v \cdot \bar{e}^v = < 2/3 , -1/3 > \cdot < 1 , -1 > =1
. . as one would expect.
My confusion is this: Isn't the magnitude of a vector equal to the square root of its inner product with itself?
<br /> \vec {v} \cdot \vec{v} = v^a v^b g_{ab} =<br /> v^a (v^b g_{ab}) = v^a v_a<br />
This would imply that \vec{e}_u, for example, has a magnitude of 1, when clearly it's the square root of (1/3)^2 + (1/3)^2 = 2/9.
Suppose I have a plane, and in the plane I put the familiar (x,y) Cartesian coordinate system, and the metric is the usual Euclidean metric with ds^2 = dx ^2 + dy^2.
Now suppose I add into this another coordinate system defined by
u=x+2y
v=x-y
and so it follows that
x=(1/3)(u + 2v)
y=(1/3)(u-v).
The basis vectors for u and v are
\vec{e}_u = < \frac {\partial x}{\partial u},\frac {\partial y}{\partial u} > ,= < 1/3 , 1/3 >
\vec{e}_v = < \frac {\partial x}{\partial v},\frac {\partial y}{\partial v} > ,= < 2/3 , -1/3 >
and the corresponding covectors are
\bar{e}^u = < \frac {\partial u}{\partial x},\frac {\partial u}{\partial y} > ,= < 1 , 2 >
\bar{e}^v = < \frac {\partial v}{\partial x},\frac {\partial v}{\partial y} > ,= < 1 , -1 >.
The inner products of the basis vectors and covectors are
\vec{e}_u \cdot \bar{e}^u = < 1/3 , 1/3 > \cdot < 1 , 2 > =1
\vec{e}_v \cdot \bar{e}^v = < 2/3 , -1/3 > \cdot < 1 , -1 > =1
. . as one would expect.
My confusion is this: Isn't the magnitude of a vector equal to the square root of its inner product with itself?
<br /> \vec {v} \cdot \vec{v} = v^a v^b g_{ab} =<br /> v^a (v^b g_{ab}) = v^a v_a<br />
This would imply that \vec{e}_u, for example, has a magnitude of 1, when clearly it's the square root of (1/3)^2 + (1/3)^2 = 2/9.
Last edited: