Jhenrique
- 676
- 4
Homework Statement
Get the solution (for y(x)) for the follows integrals: \int y(x) dx = ky\;\;\;\;\;(1) \int y(x) dx = \frac{k}{y}\;\;\;\;\;(2) \int y(x) dx = kx\;\;\;\;\;(3) \int y(x) dx = \frac{k}{x}\;\;\;\;\;(4)
Homework Equations
The Attempt at a Solution
\\ \int y(x)dx = kx \\ \\ \int y(x)\frac{dx}{dx} = \frac{kx}{dx} \\ \\ d\int y(x) = d\frac{kx}{dx} \\ \\ y(x) = k\frac{dx}{dx} \\ \\ y(x) = k
\\ \int y(x)dx = \frac{k}{x} \\ \\ \int y(x)\frac{dx}{dx} = \frac{1}{dx} \frac{k}{x} \\ \\ d\int y(x) = \frac{d}{dx} \frac{k}{x} \\ \\ y(x) = k \frac{d}{dx}\left ( \frac{1}{x} \right ) \\ \\ y(x) = -\frac{k}{x^2}