We have the first order ODE(adsbygoogle = window.adsbygoogle || []).push({});

[tex] y'=4t \sqrt y,~y(0)=1, [/tex]

for which i have found the exact solution, namely a fourth order polynomial.

I want a numerical method to solve the problem exactly. This method has to be a fourth order method, since this implies that the local error vanishes.

Now we change the problem so it becomes

[tex] y'=4t \sqrt y - \lambda(y-(1+t^2)^2),~y(0)=a, [/tex]

and the question is: for which values of [itex]\lambda[/itex] and [itex]a[/itex] does a method that has the above mentioned property solve the new problem exactly.

Of course, the obvious case is [itex]\lambda=0[/itex] and [itex]a=1[/itex], because in this case the new problem reduces to the first problem.

My idea is that the solution must be a fourth order polynomial, since a fourth order numerical method has to solve the new problem exactly.

Although I want your view on this and a strategy to find the values of [itex]\lambda[/itex] and [itex]a[/itex] for which the new problem is solved exactly by a fourth order numerical method.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Solution of a first order ODE.

**Physics Forums | Science Articles, Homework Help, Discussion**