Solution to the Schrödinger equation for a non rigid step

Arturo Miranda
Messages
2
Reaction score
0
I've been having troubles resolving the Schödinger's time independent one-dimensional equation when you have a particle that goes from a zone with a constant potential to a zone with another constant potential, yet the potential is a continuos function of the form:

$$
V(x)=\left\{
\begin{array}{lcl}
0&\text{if}&x<0\\
\displaystyle\frac{V_{0}}{d}x&\text{if}&0<x<d\\
V_{0}&\text{if}&d<x
\end{array}\right.
$$

My main problem is around the solution in the second region of the potential, the non-constant region, in which looks like:
$$E\psi(x)=\frac{\hbar^{2}}{2m}d_{x}^{2}\psi(x)+\frac{V_{0}}{d}x\,\psi(x)$$
If tried solving the differential equation by lowering it's order, yet I have not managed to do so. Is there another way of attacking the problem? Or how may I resolve the diff. equation?
 
Physics news on Phys.org
No worries - it's not something you were going to guess.
Note: this sort of thing happens a lot.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top