Lightf
- 16
- 0
Homework Statement
\phi = 4\arctan{\exp^{m\gamma(x-vt)}}
Show
\dot{\phi} = -2m\gamma v \sin{\frac{\phi}{2}}
Homework Equations
The Attempt at a Solution
\phi = 4\arctan{\exp^{m\gamma(x-vt)}}
\tan{\phi/4} = \exp^{m\gamma(x-vt)}
\frac{\dot{\phi}}{4\cos^{2}{\frac{\phi}{4}}} = -m\gamma v \exp^{m\gamma(x-vt)}
From an example question, They say that
$$ -m\gamma v \exp^{m\gamma(x-vt)} = -m\gamma v \tan{\frac{\phi}{2}}$$
Which implies that \dot{\phi} = -2m\gamma v \sin{\frac{\phi}{2}}
Can someone explain to me how: -m\gamma v \exp^{m\gamma(x-vt)} = -m\gamma v \tan{\frac{\phi}{2}}?