Taturana
- 108
- 0
Homework Statement
Find the equation of a tangent line to the curve y = x³ - 1, that is perpendicular to y = -x (I mean the tangent line should be perpendicular to y=-x, sorry for my bad english).
Homework Equations
The Attempt at a Solution
y = x^3 - 1; \;\; y' = 3x^2
If the tangent line must be perpendicular to y = -x then its slope must be +1, right? So we need to know at what value of x the slope is +1:
1 = 3x^2; \;\; x = \pm \frac{\sqrt{3}}{3}
y - \left ( \frac{\sqrt{3}^3}{3^3} -1 \right ) = \left ( x - \frac{\sqrt{3}}{3} \right )27y - 3\sqrt{3} + 27 = x - 9\sqrt{3}
x - 27y - 9\sqrt{3} + 3\sqrt{3} + 27 = 0
x - 27y +6\sqrt{3} + 27 = 0
The correct answer is
3\sqrt{3} x - 3\sqrt{3} y - 3\sqrt{3} -2 = 0; \;\; 3\sqrt{3} x - 3\sqrt{3} y - 3\sqrt{3} +2 = 0
I hope this was not an error in arithmetics...
Thank you for the help...