Solve Challenging Limit Homework: 2

  • Thread starter Thread starter sponsoredwalk
  • Start date Start date
  • Tags Tags
    Limit
sponsoredwalk
Messages
531
Reaction score
5

Homework Statement



Find this crazy limit using algebraic manipulations. I've tried quite a bit of stuff and keep getting lost, can you recommend anything?

The answer is 2.

Homework Equations



\lim_{x \to - 1} \frac{108(x^2 \ + \ 2x)(x \ + \ 1)^3}{(x^3 \ + \ 1)^3(x \ - \ 1)}

The Attempt at a Solution



\lim_{x \to - 1} \frac{108(x^2 \ + \ 2x)(x \ + \ 1)^2(x \ + \ 1)}{(x^3 \ + \ 1)^3(x \ - \ 1)}

\lim_{x \to - 1} \frac{108(x^2 \ + \ 2x)(x ^2\ + \ 2x \ + \ 1)(x \ + \ 1)}{(x^3 \ + \ 1)^3(x \ - \ 1)}

\lim_{x \to - 1} \frac{108(x^2 \ + \ 2x)(x ^3\ + \ 3x^2 \ + \ 3x \ + \ 1)}{(x^3 \ + \ 1)^3(x \ - \ 1)}

If I were to keep going expanding I'll get x^10 on the bottom and x^5 on the top, it just gets so hairy & I can't find any commonality.
 
Physics news on Phys.org
Simplify it to

\frac{108 x (2+x)}{(x-1) \left(1-x+x^2\right)^3}
 
Ahh! I should have just realized to factor x³ + 1! So simple now thank you :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top