- 4,796
- 32
I need help with the following problem.
Consider the serie of function
\sum_{n=1}^{\infty}\frac{1}{1+n^2x}
The serie is undefined for x \in \{0\}\cup \{-1/n^2, \ n\in \mathbb{N}\}. I want to find wheter it converges pointwise in (-1, 0) or not and if it does, does it converge uniformly?
The way I would start this problem is by saying: For a given number m \in \mathbb{N}, consider
x_0 \in \left(\frac{-1}{m^2} \ ,\frac{-1}{(m+1)^2}\right)
Consider
f_n(x) = \frac{1}{1+n^2x}
Then
|f_n(x_0)| = \frac{1}{|1+n^2x_0|} = \frac{1}{|1-n^2|x_0||}= \left\{ \begin{array}{rcl} <br /> \frac{1}{1-n^2|x_0|} & \mbox{for}<br /> & n<\sqrt{\frac{1}{|x_0|} \\ <br /> \frac{1}{n^2|x_0|-1} & \mbox{for}<br /> & n>\sqrt{\frac{1}{|x_0|}<br /> \end{array}\right
and
\sum_{n=1}^{\infty}|f_n(x_0)| = \sum_{n=1}^{\left[\sqrt{1/|x_0|}\right]}\frac{1}{1-n^2|x_0|} + \sum_{n=\left[\sqrt{1/|x_0|}\right]+1}^{\infty}\frac{1}{n^2|x_0|-1}
I'm guessing this serie converges, but I'm having trouble finding a convergent serie to bound it with. The other convergence tests have failed and the use of the integral convergence criterion is forbiden. I know that if there is a serie to bound it with, it would be of the form
\sum_{n=1}^{\infty}a_n = \sum_{n=1}^{\left[\sqrt{1/|x_0|}\right]}\frac{1}{1-n^2|x_0|} + \sum_{n=\left[\sqrt{1/|x_0|}\right]+1}^{\infty}b_n
with
\frac{1}{n^2|x_0|-1} \leq b_n
for n > N.
Edit:
And if there exists such an N that also satisfies
N\leq \left[\sqrt{1/|x_0|}\right]
then according to Weirstrass M-test, the convergence is uniform.
Consider the serie of function
\sum_{n=1}^{\infty}\frac{1}{1+n^2x}
The serie is undefined for x \in \{0\}\cup \{-1/n^2, \ n\in \mathbb{N}\}. I want to find wheter it converges pointwise in (-1, 0) or not and if it does, does it converge uniformly?
The way I would start this problem is by saying: For a given number m \in \mathbb{N}, consider
x_0 \in \left(\frac{-1}{m^2} \ ,\frac{-1}{(m+1)^2}\right)
Consider
f_n(x) = \frac{1}{1+n^2x}
Then
|f_n(x_0)| = \frac{1}{|1+n^2x_0|} = \frac{1}{|1-n^2|x_0||}= \left\{ \begin{array}{rcl} <br /> \frac{1}{1-n^2|x_0|} & \mbox{for}<br /> & n<\sqrt{\frac{1}{|x_0|} \\ <br /> \frac{1}{n^2|x_0|-1} & \mbox{for}<br /> & n>\sqrt{\frac{1}{|x_0|}<br /> \end{array}\right
and
\sum_{n=1}^{\infty}|f_n(x_0)| = \sum_{n=1}^{\left[\sqrt{1/|x_0|}\right]}\frac{1}{1-n^2|x_0|} + \sum_{n=\left[\sqrt{1/|x_0|}\right]+1}^{\infty}\frac{1}{n^2|x_0|-1}
I'm guessing this serie converges, but I'm having trouble finding a convergent serie to bound it with. The other convergence tests have failed and the use of the integral convergence criterion is forbiden. I know that if there is a serie to bound it with, it would be of the form
\sum_{n=1}^{\infty}a_n = \sum_{n=1}^{\left[\sqrt{1/|x_0|}\right]}\frac{1}{1-n^2|x_0|} + \sum_{n=\left[\sqrt{1/|x_0|}\right]+1}^{\infty}b_n
with
\frac{1}{n^2|x_0|-1} \leq b_n
for n > N.
Edit:
And if there exists such an N that also satisfies
N\leq \left[\sqrt{1/|x_0|}\right]
then according to Weirstrass M-test, the convergence is uniform.
Last edited: