MHB Solve Derivative of Integral with F(x) - SnowPatrol Yahoo Answers

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Derivative of integral?


F(x) = integral of e^(t^2)dt (upper limit = cosx, lower limit = sinx)
Now find F'(x) at x=0

HOW DO I SOLVE THIS :O

Okay so this is what I did,
solve integration, answer is [e^(t^2)]/2t
[2t is the derivative of power(t^2), you're suppose to DIVIDE the integration by the derivative, riiight?]

I put t=cosx, t=sinx
So, it becomes

e^({cosx}^2)]/2cosx - e^({sinx}^2)]/2cosx

Now I take its derivative...
which turns out to be very complicated so I think I'm doing it wrong, because it is supposed to be not-so-long.

THIS IS THE ANSWER GIVEN AT THE BACK:
Answer:
F ′(x)=exp (cos2 (x)) ·−sin (x)−exp (sin2 (x)) · cos (x) by FTOC
F ′(0)=exp (1) · 0−exp (0) · 1=−1

NOW HOLD ON A SECOND.
ISNT DERIVATIVE OF AN INTEGRAL, THE FUNCTION ITSELF? YESSSS.

OKAY, BUT THE DERIVATIVE AND INTEGRAL DONT UMMM CANCEL OUT TILL THE dx/dy/dt IS SAME WITH DERIVATIVE AND INTEGRATION!

Okay, I somehow solved the question B) *pat pat*
Can someone tell me how do i write this down on my paper?? O.o

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello SnowPatrol,

We are given:

$$F(x)=\int_{\sin(x)}^{\cos(x)} e^{t^2}\,dt$$

And we are asked to find $F'(0)$.

By the FTOC and the Chain Rule, we have:

$$\frac{d}{dx}\int_{g(x)}^{h(x)} f(t)\,dt=f(h(x))\frac{dh}{dx}-f(g(x))\frac{dg}{dx}$$

Applying this formula, we find

$$F'(x)=-\sin(x)e^{\cos^2(x)}-\cos(x)e^{\sin^2(x)}$$

Hence:

$$F'(0)=-\sin(0)e^{\cos^2(0)}-\cos(0)e^{\sin^2(0)}=0-1=-1$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top