Solve Group Theory Problem - Prime Order of G must be p^n

equivalence
Messages
2
Reaction score
0
Hi

I have a problem I just can't seem to solve, even though the solution shouldn't be too hard

Let G be a finite abelian group and let p be a prime.
Suppose that any non-trivial element g in G has order p. Show that the order of G must be p^n for some positive integer n.

Anyone got any ideas about how to approach this??

thanks,
 
Physics news on Phys.org
Suppose there is another prime q that divides the order of the group and show there must be an element of order q.
 
but is it the case that for all factors of the order of a group there is an element of that order?? i am soo confused..
 
You know Lagranges theorem..? Consider the subgroup generated by g,- what's his order?. Well, if you like carefully at what " generates" means, youll see that the order of the subgroup generated by g is also p.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top