MHB Solve Indefinite Integral of lnx/(1+x^2)^(3/2): Vuk's Q&A on Yahoo Answers

Click For Summary
The integral of (lnx)/(1+x^2)^(3/2) can be solved using integration by parts, where u = ln(x) and dv = dx/(1+x^2)^(3/2). A trigonometric substitution, x = tan(θ), simplifies the integral, leading to v = sin(θ). After applying integration by parts, the integral is expressed as I = (x ln(x))/√(x^2+1) - ∫(sec(θ) dθ). The final result is I = (x ln(x))/√(x^2+1) - ln(√(x^2+1) + x) + C.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

How do you solve the integral of (lnx)dx/(1+x^2)^(3/2)?

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Vuk,

We are given to evaluate:

$$I=\int\frac{\ln(x)}{\left(x^2+1 \right)^{\frac{3}{2}}}\,dx$$

If we use integration by parts, we could let:

$$u=\ln(x)\,\therefore\,du=\frac{1}{x}\,dx$$

$$dv=\frac{1}{\left(x^2+1 \right)^{\frac{3}{2}}}\,dx$$

To find $v$, we may use a trigonometric substitution:

$$x=\tan(\theta)\,\therefore\,dx= \sec^2(\theta)\,d\theta$$

and we find:

$$v=\frac{\sec^2(\theta)}{\left(\tan^2(\theta)+1 \right)^{\frac{3}{2}}}\,d\theta$$

Using the Pythagorean identity $$\tan^2(\theta)+1=\sec^2(\theta)$$ we get:

$$v=\frac{\sec^2(\theta)}{\sec^3(\theta)}\,d\theta= \int\cos(\theta)\,d\theta=\sin(\theta)$$

Back-substituting for $\theta$, we obtain:

$$v=\sin\left(\tan^{-1}(x) \right)=\frac{x}{\sqrt{x^2+1}}$$

And so we have:

$$I=\frac{x\ln(x)}{\sqrt{x^2+1}}-\int\frac{1}{\sqrt{x^2+1}}\,dx$$

Now, using the same trigonometric substitution we used before, we have:

$$I=\frac{x\ln(x)}{\sqrt{x^2+1}}- \int\sec(\theta)\,d\theta$$

Let:

$$u=\sec(\theta)+\tan(\theta)\, \therefore\,du= \left(\sec(\theta) \tan(\theta)+\sec^2( \theta) \right)\,d\theta=$$

$$\sec(\theta)\left(\tan(\theta)+\sec(\theta) \right)\,d\theta=u \sec(\theta)\,d\theta\,\therefore\,\sec(\theta)\,d\theta=\frac{1}{u}\,du$$

Hence, we now have:

$$I=\frac{x\ln(x)}{\sqrt{x^2+1}}-\int\frac{1}{u}\,du$$

$$I=\frac{x\ln(x)}{\sqrt{x^2+1}}-\ln|u|+C$$

Back-substitute for $u$:

$$I=\frac{x\ln(x)}{\sqrt{x^2+1}}-\ln|\sec(\theta)+\tan(\theta)|+C$$

Back-substitute for $\theta$:

$$I=\frac{x\ln(x)}{\sqrt{x^2+1}}-\ln\left|\sqrt{x^2+1}+x \right|+C$$

And we are done. (Sun)
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K