Solve Indefinite Integral of lnx/(1+x^2)^(3/2): Vuk's Q&A on Yahoo Answers

Click For Summary
SUMMARY

The integral of \(\frac{\ln(x)}{(1+x^2)^{3/2}}\,dx\) is solved using integration by parts and trigonometric substitution. The substitution \(x = \tan(\theta)\) simplifies the integral, leading to the expression \(I = \frac{x\ln(x)}{\sqrt{x^2+1}} - \ln\left|\sqrt{x^2+1}+x\right| + C\). This method effectively combines calculus techniques to arrive at the final solution.

PREREQUISITES
  • Integration by parts
  • Trigonometric substitution
  • Pythagorean identities
  • Understanding of logarithmic functions
NEXT STEPS
  • Study advanced integration techniques, focusing on integration by parts.
  • Learn about trigonometric substitutions in calculus.
  • Explore the properties of logarithmic functions in integration.
  • Practice solving integrals involving logarithmic and trigonometric functions.
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus and integral techniques, as well as educators looking for examples of advanced integration methods.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

How do you solve the integral of (lnx)dx/(1+x^2)^(3/2)?

I have posted a link there to this topic so the OP can see my work.
 
Physics news on Phys.org
Hello Vuk,

We are given to evaluate:

$$I=\int\frac{\ln(x)}{\left(x^2+1 \right)^{\frac{3}{2}}}\,dx$$

If we use integration by parts, we could let:

$$u=\ln(x)\,\therefore\,du=\frac{1}{x}\,dx$$

$$dv=\frac{1}{\left(x^2+1 \right)^{\frac{3}{2}}}\,dx$$

To find $v$, we may use a trigonometric substitution:

$$x=\tan(\theta)\,\therefore\,dx= \sec^2(\theta)\,d\theta$$

and we find:

$$v=\frac{\sec^2(\theta)}{\left(\tan^2(\theta)+1 \right)^{\frac{3}{2}}}\,d\theta$$

Using the Pythagorean identity $$\tan^2(\theta)+1=\sec^2(\theta)$$ we get:

$$v=\frac{\sec^2(\theta)}{\sec^3(\theta)}\,d\theta= \int\cos(\theta)\,d\theta=\sin(\theta)$$

Back-substituting for $\theta$, we obtain:

$$v=\sin\left(\tan^{-1}(x) \right)=\frac{x}{\sqrt{x^2+1}}$$

And so we have:

$$I=\frac{x\ln(x)}{\sqrt{x^2+1}}-\int\frac{1}{\sqrt{x^2+1}}\,dx$$

Now, using the same trigonometric substitution we used before, we have:

$$I=\frac{x\ln(x)}{\sqrt{x^2+1}}- \int\sec(\theta)\,d\theta$$

Let:

$$u=\sec(\theta)+\tan(\theta)\, \therefore\,du= \left(\sec(\theta) \tan(\theta)+\sec^2( \theta) \right)\,d\theta=$$

$$\sec(\theta)\left(\tan(\theta)+\sec(\theta) \right)\,d\theta=u \sec(\theta)\,d\theta\,\therefore\,\sec(\theta)\,d\theta=\frac{1}{u}\,du$$

Hence, we now have:

$$I=\frac{x\ln(x)}{\sqrt{x^2+1}}-\int\frac{1}{u}\,du$$

$$I=\frac{x\ln(x)}{\sqrt{x^2+1}}-\ln|u|+C$$

Back-substitute for $u$:

$$I=\frac{x\ln(x)}{\sqrt{x^2+1}}-\ln|\sec(\theta)+\tan(\theta)|+C$$

Back-substitute for $\theta$:

$$I=\frac{x\ln(x)}{\sqrt{x^2+1}}-\ln\left|\sqrt{x^2+1}+x \right|+C$$

And we are done. (Sun)
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
6K