MHB Solve Indefinite Integral of lnx/(1+x^2)^(3/2): Vuk's Q&A on Yahoo Answers

Click For Summary
The integral of (lnx)/(1+x^2)^(3/2) can be solved using integration by parts, where u = ln(x) and dv = dx/(1+x^2)^(3/2). A trigonometric substitution, x = tan(θ), simplifies the integral, leading to v = sin(θ). After applying integration by parts, the integral is expressed as I = (x ln(x))/√(x^2+1) - ∫(sec(θ) dθ). The final result is I = (x ln(x))/√(x^2+1) - ln(√(x^2+1) + x) + C.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

How do you solve the integral of (lnx)dx/(1+x^2)^(3/2)?

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Vuk,

We are given to evaluate:

$$I=\int\frac{\ln(x)}{\left(x^2+1 \right)^{\frac{3}{2}}}\,dx$$

If we use integration by parts, we could let:

$$u=\ln(x)\,\therefore\,du=\frac{1}{x}\,dx$$

$$dv=\frac{1}{\left(x^2+1 \right)^{\frac{3}{2}}}\,dx$$

To find $v$, we may use a trigonometric substitution:

$$x=\tan(\theta)\,\therefore\,dx= \sec^2(\theta)\,d\theta$$

and we find:

$$v=\frac{\sec^2(\theta)}{\left(\tan^2(\theta)+1 \right)^{\frac{3}{2}}}\,d\theta$$

Using the Pythagorean identity $$\tan^2(\theta)+1=\sec^2(\theta)$$ we get:

$$v=\frac{\sec^2(\theta)}{\sec^3(\theta)}\,d\theta= \int\cos(\theta)\,d\theta=\sin(\theta)$$

Back-substituting for $\theta$, we obtain:

$$v=\sin\left(\tan^{-1}(x) \right)=\frac{x}{\sqrt{x^2+1}}$$

And so we have:

$$I=\frac{x\ln(x)}{\sqrt{x^2+1}}-\int\frac{1}{\sqrt{x^2+1}}\,dx$$

Now, using the same trigonometric substitution we used before, we have:

$$I=\frac{x\ln(x)}{\sqrt{x^2+1}}- \int\sec(\theta)\,d\theta$$

Let:

$$u=\sec(\theta)+\tan(\theta)\, \therefore\,du= \left(\sec(\theta) \tan(\theta)+\sec^2( \theta) \right)\,d\theta=$$

$$\sec(\theta)\left(\tan(\theta)+\sec(\theta) \right)\,d\theta=u \sec(\theta)\,d\theta\,\therefore\,\sec(\theta)\,d\theta=\frac{1}{u}\,du$$

Hence, we now have:

$$I=\frac{x\ln(x)}{\sqrt{x^2+1}}-\int\frac{1}{u}\,du$$

$$I=\frac{x\ln(x)}{\sqrt{x^2+1}}-\ln|u|+C$$

Back-substitute for $u$:

$$I=\frac{x\ln(x)}{\sqrt{x^2+1}}-\ln|\sec(\theta)+\tan(\theta)|+C$$

Back-substitute for $\theta$:

$$I=\frac{x\ln(x)}{\sqrt{x^2+1}}-\ln\left|\sqrt{x^2+1}+x \right|+C$$

And we are done. (Sun)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K