Bill Foster
- 334
- 0
Homework Statement
Show that the elements of the seqeunce h_k\left(x\right)=H_k\left(x\right)e^{-\frac{1}{2}x^2} and H_k\left(x\right)=\left(-1\right)^n e^{x^2}\frac{d^n}{dx^n}e^{-x^2} have the norm ||h_k||=\sqrt{2^nn!\sqrt{\pi}}
Homework Equations
||h_k||=\sqrt{\left(h_k^*,h_k\right)}
\left(h_k^*,h_k\right)=\int{h_k^*h_kdx}
The Attempt at a Solution
h_k\left(x\right)=\left(-1\right)^n e^{x^2}e^{-\frac{1}{2}x^2}\frac{d^n}{dx^n}e^{-x^2}=\left(-1\right)^n e^{\frac{1}{2}x^2}\frac{d^n}{dx^n}e^{-x^2}||h_k||=\sqrt{\int{\left(\left(-1\right)^n e^{\frac{1}{2}x^2}\frac{d^n}{dx^n}e^{-x^2}\right)^*\left(\left(-1\right)^n e^{\frac{1}{2}x^2}\frac{d^n}{dx^n}e^{-x^2}\right)dx}}
=\sqrt{\int{\left(e^{x^2}\frac{d^{2n}}{dx^{2n}}e^{-2x^2}\right)dx}}
I tried using \int{udv}=uv-\int{vdu}
u=e^{x^2}
du=2xe^{x^2}dx
dv=\frac{d^{2n}}{dx^{2n}}e^{-2x^2}dx
v=\frac{d^{2n}}{dx^{2n-1}}e^{-2x^2} I don't think that's right.
Any help would be appreciated.