Solve Linear Combinations: -9 - 7x - 15x^2

_Haemon_
Messages
1
Reaction score
0
hi there, my book didn't have an example like this so I am not sure what to do to solve it. Please explain how to do it, thanks.

Express the following as linear combinations of p1 = 2 + x + 4x^2, p2 = 1 - x + 3x^2, and p3 = 3 + 2x + 5x^2

a.) -9 - 7x - 15x^2
 
Physics news on Phys.org
You multiply p1 by some constant a, p2 by a constant b, p3 by a constant c. Then comparing the coefficients of the different degrees of x with the polynomial you're trying to get, you have three equations with three unknowns, so you solve for a, b and c
 
a(2+x+4x^2)+ b(1- x+ 3x^2)+ c(3+ 2x+ 5x^2)= -9- 7x- 15x^2

Solve for a, b, and c so that is true for all x.

There are two ways to do that. One is, since this must be true for all x, to choose three values for x, thus getting 3 equations to solve for a, b, and c. The other is to use the fact that, in order for two polynomials to be equal for all x, "corresponding coefficients" must be equal. Setting corresponding coefficients equal here, again, gives you three equations to solve for a, b, and c.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top