Solve Potential Barrier Homework: Find Transmission/Reflection Coeff.

E92M3
Messages
64
Reaction score
0

Homework Statement


Find the transmission and reflection coefficients for:
V(x)=\left\{\begin{matrix}<br /> V_0, &amp; -a\leq x\leq a\\ <br /> 0, &amp; elsewhere<br /> \end{matrix}\right.


Homework Equations


\frac{-\hbar^2}{2m}\frac{\partial^2 }{\partial x^2}\psi+V\psi=E\psi


The Attempt at a Solution


I have successfully got the solution for:
E=V_0
and
E&gt;V_0
But I am having trouble with
E&lt;V_0
Here's my attempt:
First, I denoted the left of the barrier as region I, within the barrier as region II, and to the right of the barrier as region III.
Rearranging the schrodinger Equation I get:
\frac{\partial^2 }{\partial x^2}\psi_{I}=\frac{-2m}{\hbar^2}(E)\psi_{I}
\frac{\partial^2 }{\partial x^2}\psi_{II}=\frac{2m}{\hbar^2}(V_0-E)\psi_{II}
\frac{\partial^2 }{\partial x^2}\psi_{III}=\frac{-2m}{\hbar^2}(E)\psi_{III}
The solutions are:
\psi_{I}=Ae^{ikx}+Be^{-ikx}
\psi_{II}=Ce^{-lx}+De^{lx}
\psi_{I}=Fe^{ikx}
where:
k=\frac{\sqrt{2mE}}{\hbar}
l=\frac{\sqrt{2m(V_0-E)}}{\hbar}
The -ikx term omitted since there's assumed to be no incoming wave from +x-direction.
Applying the boundary conditions:
\psi_{I}(-a)=\psi_{II}(-a)\Rightarrow Ae^{-ika}+Be^{ika}=Ce^{la}+De^{-la} \Rightarrow (1)

\left.\begin{matrix}<br /> \frac{\partial \psi_{I}}{\partial x}<br /> \end{matrix}\right|_{x=-a}=\left.\begin{matrix}<br /> \frac{\partial \psi_{II}}{\partial x}<br /> \end{matrix}\right|_{x=-a}\Rightarrow ik(Ae^{-ika}-Be^{ika})=l(-Ce^{la}+De^{-la})\Rightarrow (2)

\psi_{II}(a)=\psi_{III}(a)\Rightarrow Ce^{-la}+De^{la}=Fe^{ika}\Rightarrow (3)

\left.\begin{matrix}<br /> \frac{\partial \psi_{II}}{\partial x}<br /> \end{matrix}\right|_{x=a}=\left.\begin{matrix}<br /> \frac{\partial \psi_{III}}{\partial x}<br /> \end{matrix}\right|_{x=a}\Rightarrow l(-Ce^{-la}+De^{la})=ikFe^{ika}\Rightarrow (4)

From (3) we have:

C=Fe^{ika}e^la-De{2la}

Putting that into (4) we get:

D=\frac{1}{2}(1+\frac{ik}{l})Fe^{ika}e^{-la}

From (3) we also have:

D=Fe^{ika}e^-{la}-Ce^{-2la}

Putting that into (4) we now get:

C=\frac{1}{2}(1-\frac{ik}{l})Fe^{ika}e^{la}

Rearranging (2) we get:

Ae^{-ika}-Be^{ika}=\frac{il}{k}(De^{-la}-Ce^{la})

Summing the equation above with (1) we get::

2Ae^{-ika}=Ce^{la}+De^{-la}-\frac{il}{k}(De^{-la}-Ce^{la})=Ce^{la}(1+\frac{il}{k})+De^{-la}(1-\frac{il}{k})

Now we put in the the C and D that we got from playing with (3) and (4) before and get:

2Ae^-{ika}=\frac{1}{2}(1-\frac{ik}{l})Fe^{ika}e^{la}e^{la}(1+\frac{il}{k})+\frac{1}{2}(1+\frac{ik}{l})Fe^{ika}e^{-la}e^{-la}(1-\frac{il}{k})

2Ae^{-ika}=Fe^{ika}\left [\frac{1}{2} (1-\frac{ik}{l})(1+\frac{il}{k}) e^{2la} +\frac{1}{2} (1+\frac{ik}{l})(1-\frac{il}{k}) e^{-2la} \right ]

2Ae^{-ika}=Fe^{ika}\left [\frac{1}{2} (1+\frac{il}{k}-\frac{ik}{l}+1)e^{2la}+\frac{1}{2} (1-\frac{il}{k}+\frac{ik}{l}+1)e^{-2la} \right ]

2Ae^{-ika}=Fe^{ika}\left [\frac{1}{2} (2+ i\frac{l^2-k^2}{kl})e^{2la}+\frac{1}{2} (2-i\frac{l^2-k^2}{kl} )e^{-2la} \right ]


2Ae^{-ika}=Fe^{ika}\left [e^{2la}+ i\frac{l^2-k^2}{kl}\frac{1}{2} e^{2la}+e^{-2la} -\frac{1}{2}i\frac{l^2-k^2}{kl} e^{-2la} \right ]


2Ae^{-ika}=Fe^{ika}\left [(e^{2la}+e^{-2la})+( i\frac{l^2-k^2}{kl})(\frac{1}{2} e^{2la} -\frac{1}{2} e^{-2la} )\right ]


2Ae^{-ika}=Fe^{ika}\left [2cosh(2la)+( i\frac{l^2-k^2}{kl})sinh(2la)\right ]

F=\frac{Ae^{-2ika}}{cosh(2la)+( i\frac{l^2-k^2}{2kl})sinh(2la)}

T=\frac{\left | F \right |^2}{\left | A \right |^2}=\frac{e^{-2ika}}{cosh(2la)+( i\frac{l^2-k^2}{2kl})sinh(2la)}\frac{e^{2ika}}{cosh(2la)-( i\frac{l^2-k^2}{2kl})sinh(2la)}

=\frac{1}{cosh^2(2la)+( \frac{l^2-k^2}{2kl})^2sinh^2(2la)}

=\frac{1}{1+sinh^2(2la)+\frac{1}{4}( \frac{l^2}{k^2}+\frac{k^2}{l^2}-2)sinh^2(2la)}


I am now stuck... I can't get the sinh(2la) that I wanted. Did I do snmething wrong?
 
Last edited:
Physics news on Phys.org
Everything look fine to me (although you could simplify \frac{l^2}{k^2}+\frac{k^2}{l^2} significantly)...do you know what your final answer is supposed to look like?
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top