Solve Riccati Equation: Tips & Solutions w/Mathematica 5

  • Thread starter Thread starter steveonyango
  • Start date Start date
steveonyango
Messages
1
Reaction score
0
How can the Riccati equation of the form
\frac{dy(x)}{dx}=\cos \omega x +\alpha y(x) -4\cos \omega x y^{2}(x)
be solved? I have tried using Mathematica 5 and I can't solve it! PLEASE HELP
 
Physics news on Phys.org
Don't forget the tex tags around your equation. You can always preview your post:

\frac{dy(x)}{dx}=\cos \omega x +\alpha y(x) -4\cos \omega x y^{2}(x)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top