Solve sin(t) cos(2t)=b1 sin(t)+b2 sin(2t)+b3 sin(3t)

  • Thread starter Thread starter aqsa
  • Start date Start date
aqsa
Messages
3
Reaction score
0
sin(t) cos(2t) = ??

ok so i have to find the values for b1,b2 and b3...but i am clueless on how to find them
can anyone help?

sin(t) cos(2t) = b1 sin(t) + b2 sin(2t) + b3 sin(3t):

i thought of converting it to complex but that did not help much!
 
Physics news on Phys.org


o yeah..forgot about those! thanks guys!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top