MHB Solve System of Equations: a+b, ab+c+d, ad+bc, cd

AI Thread Summary
The discussion revolves around solving a system of equations involving four variables: a, b, c, and d. The equations provided are a + b = 8, ab + c + d = 23, ad + bc = 28, and cd = 12. Despite attempts to find a solution, no definitive answer has been reached, and participants express a lack of confidence in their solutions. The conversation indicates a struggle with the complexity of the equations, leading to a sense of closure without resolution. The thread highlights the challenges of solving nonlinear systems of equations.
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
solve the following system of equations in real a,b,c,d

$a+ b =8 $

$ab + c +d = 23 $

$ad + bc = 28$

$cd = 12$
 
Mathematics news on Phys.org
No answer yet

hint

form a quartic equation
 
kaliprasad said:
solve the following system of equations in real a,b,c,d

$a+ b =8 $

$ab + c +d = 23 $

$ad + bc = 28$

$cd = 12$

kaliprasad said:
No answer yet

hint

form a quartic equation

My solution:

If we form a quartic equation as the product of two quadratic equations as follow, we have:

$\begin{align*}(x^2+ax+c)(x^2+bx+d)&=x^4+(a+b)x^3+(ab+c+d)x^2+(ad+bc)x+cd\\&=x^4+8x^3+23x^2+28x+12\\&\overset{I}{=}((x+1)(x+2))((x+2)(x+3))=(x^2+3x+2)(x^2+5x+6)\\&\overset{II}{=}((x+1)(x+3))((x+2)(x+2))=(x^2+4x+3)(x^2+4x+4)\\&\overset{III}{=}((x+2)(x+3))((x+1)(x+2))=(x^2+5x+6)(x^2+3x+2)\\&\overset{IV}{=}((x+2)(x+2))((x+1)(x+3))=(x^2+4x+4)(x^2+4x+3)\end{align*}$

Hence, $(a,\,b,\,c,\,d)=(3,\,5,\,2,\,6),\,(4,\,4,\,3,\,4),\,(5,\,3,\,6,\,2),\,(4,\,4,\,4,\,3)$.

But...I'm not proud of myself for this solution because...

Without the hint, I could have never solved this great challenge!:oThank you so much, kaliprasad for the hint and also for sharing with us of this great challenge! I could tell I've fallen in love with this problem at first sight!Hahaha...
 
Last edited:
anemone said:
My solution:

If we form a quartic equation as the product of two quadratic equation as follow, we have:

$\begin{align*}(x^2+ax+c)(x^2+bx+d)&=x^4+(a+b)x^3+(ab+c+d)x^2+(ad+bc)x+cd\\&=x^4+8x^3+23x^2+28x+12\\&\overset{I}{=}((x+1)(x+2))((x+2)(x+3))=(x^2+3x+2)(x^2+5x+6)\\&\overset{II}{=}((x+1)(x+3))((x+2)(x+2))=(x^2+4x+3)(x^2+4x+4)\\&\overset{III}{=}((x+2)(x+3))((x+1)(x+2))=(x^2+5x+6)(x^2+3x+2)\\&\overset{IV}{=}((x+2)(x+2))((x+1)(x+3))=(x^2+4x+4)(x^2+4x+3)\end{align*}$

Hence, $(a,\,b,\,c,\,d)=(3,\,5,\,2,\,6),\,(4,\,4,\,3,\,4),\,(5,\,3,\,6,\,2),\,(4,\,4,\,4,\,3)$.

But...I'm not proud of myself for this solution because...

Without the hint, I could have never solved this great challenge!:oThank you so much, kaliprasad for the hint and also for sharing with us of this great challenge! I could tell I've fallen in love with this problem at first sight!Hahaha...

Nothing more to write to make it right(pun intended)

Hence it is closed
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
7
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
9
Views
2K
Replies
10
Views
1K
Replies
1
Views
856
Replies
3
Views
2K
Back
Top