MHB Solve System of Equations: a+b, ab+c+d, ad+bc, cd

AI Thread Summary
The discussion revolves around solving a system of equations involving four variables: a, b, c, and d. The equations provided are a + b = 8, ab + c + d = 23, ad + bc = 28, and cd = 12. Despite attempts to find a solution, no definitive answer has been reached, and participants express a lack of confidence in their solutions. The conversation indicates a struggle with the complexity of the equations, leading to a sense of closure without resolution. The thread highlights the challenges of solving nonlinear systems of equations.
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
solve the following system of equations in real a,b,c,d

$a+ b =8 $

$ab + c +d = 23 $

$ad + bc = 28$

$cd = 12$
 
Mathematics news on Phys.org
No answer yet

hint

form a quartic equation
 
kaliprasad said:
solve the following system of equations in real a,b,c,d

$a+ b =8 $

$ab + c +d = 23 $

$ad + bc = 28$

$cd = 12$

kaliprasad said:
No answer yet

hint

form a quartic equation

My solution:

If we form a quartic equation as the product of two quadratic equations as follow, we have:

$\begin{align*}(x^2+ax+c)(x^2+bx+d)&=x^4+(a+b)x^3+(ab+c+d)x^2+(ad+bc)x+cd\\&=x^4+8x^3+23x^2+28x+12\\&\overset{I}{=}((x+1)(x+2))((x+2)(x+3))=(x^2+3x+2)(x^2+5x+6)\\&\overset{II}{=}((x+1)(x+3))((x+2)(x+2))=(x^2+4x+3)(x^2+4x+4)\\&\overset{III}{=}((x+2)(x+3))((x+1)(x+2))=(x^2+5x+6)(x^2+3x+2)\\&\overset{IV}{=}((x+2)(x+2))((x+1)(x+3))=(x^2+4x+4)(x^2+4x+3)\end{align*}$

Hence, $(a,\,b,\,c,\,d)=(3,\,5,\,2,\,6),\,(4,\,4,\,3,\,4),\,(5,\,3,\,6,\,2),\,(4,\,4,\,4,\,3)$.

But...I'm not proud of myself for this solution because...

Without the hint, I could have never solved this great challenge!:oThank you so much, kaliprasad for the hint and also for sharing with us of this great challenge! I could tell I've fallen in love with this problem at first sight!Hahaha...
 
Last edited:
anemone said:
My solution:

If we form a quartic equation as the product of two quadratic equation as follow, we have:

$\begin{align*}(x^2+ax+c)(x^2+bx+d)&=x^4+(a+b)x^3+(ab+c+d)x^2+(ad+bc)x+cd\\&=x^4+8x^3+23x^2+28x+12\\&\overset{I}{=}((x+1)(x+2))((x+2)(x+3))=(x^2+3x+2)(x^2+5x+6)\\&\overset{II}{=}((x+1)(x+3))((x+2)(x+2))=(x^2+4x+3)(x^2+4x+4)\\&\overset{III}{=}((x+2)(x+3))((x+1)(x+2))=(x^2+5x+6)(x^2+3x+2)\\&\overset{IV}{=}((x+2)(x+2))((x+1)(x+3))=(x^2+4x+4)(x^2+4x+3)\end{align*}$

Hence, $(a,\,b,\,c,\,d)=(3,\,5,\,2,\,6),\,(4,\,4,\,3,\,4),\,(5,\,3,\,6,\,2),\,(4,\,4,\,4,\,3)$.

But...I'm not proud of myself for this solution because...

Without the hint, I could have never solved this great challenge!:oThank you so much, kaliprasad for the hint and also for sharing with us of this great challenge! I could tell I've fallen in love with this problem at first sight!Hahaha...

Nothing more to write to make it right(pun intended)

Hence it is closed
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
7
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
9
Views
2K
Replies
10
Views
995
Replies
1
Views
841
Replies
3
Views
2K
Back
Top