MHB Solve the cubic equation 4u^3+3u−3=0

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Cubic
Click For Summary
The discussion focuses on solving the cubic equation 4u^3 + 3u - 3 = 0 using two methods: first, by substituting u with sinh x, and second, by solving it directly without substitution. Participants express appreciation for the innovative solutions presented, particularly highlighting the direct method as a novel approach. The conversation emphasizes collaboration and learning from each other's techniques. Overall, the thread showcases different strategies for tackling cubic equations effectively.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Given the depressed cubic equation:

$4u^3+3u-3 =0$(1). Solve the equation with the substitution: $u = \sinh x$.

(2). Solve the equation without this substitution.
 
Mathematics news on Phys.org
My solution:

(1)

\(
4u^3+3u-3=4\sinh^3 x+3\sinh x -3
=\frac 4{2^3}(e^{x}-e^{-x})^3+\frac 32(e^{x}-e^{-x}) -3 \\
=\frac 12(e^{3x}-3e^{x}+3e^{-x}-e^{-3x}) + \frac 32(e^{x}-e^{-x}) -3
=\frac 12(e^{3x}-e^{-3x}) -3 = \sinh(3x) - 3 =0
\)

So $x=\frac 13\arsinh(3)$.
And $u=\sinh(\frac 13\arsinh(3))\approx 0.644$.(2)

Define $u=\frac 12(x+y)$.
Then:

\(
4u^3+3u-3
=\frac{4}{2^3}(x+y)^3+\frac 32(x+y)-3
=\frac 12(x^3+y^3+3xy(x+y)) + \frac 32 (x+y) - 3 \\
=\frac 12(x^3+y^3-6) + \frac 32 (xy + 1)(x+y)
= 0
\)

We have the freedom to pick $y$ arbitrarily and we pick $y$ such that \( xy+1=0 \Rightarrow y=-\frac 1x \).
It follows that:

\( x^3+y^3-6=x^3-x^{-3}-6=0 \Rightarrow (x^3)^2-6(x^3)-1=0
\Rightarrow x^3=3\pm\sqrt{10} \\
\Rightarrow x=\sqrt[3]{\sqrt{10}+3}\lor x=-\sqrt[3]{\sqrt{10}-3}
\)

Since the same solutions will hold if we had swapped $x$ and $y$, we can conclude that we can pick $x$ to be the first solution and $y$ to be the second solution.
Substituting gives us \( u=\frac 12\left(\sqrt[3]{\sqrt{10}+3} - \sqrt[3]{\sqrt{10}-3}\right) \approx 0.644\).I see some similarity between both methods and I'm still wondering how close they are. (Thinking)
 
I like Serena said:
My solution:

(1)

\(
4u^3+3u-3=4\sinh^3 x+3\sinh x -3
=\frac 4{2^3}(e^{ix}-e^{-ix})^3+\frac 32(e^{ix}-e^{-ix}) -3 \\
=\frac 12(e^{3ix}-3e^{ix}+3e^{-ix}-e^{-3ix}) + \frac 32(e^{ix}-e^{-ix}) -3
=\frac 12(e^{3ix}-e^{-3ix}) -3 = \sinh(3x) - 3 =0
\)

So $x=\frac 13\arsinh(3)$.
And $u=\sinh(\frac 13\arsinh(3))\approx 0.644$.(2)

Define $u=\frac 12(x+y)$.
Then:

\(
4u^3+3u-3
=\frac{4}{2^3}(x+y)^3+\frac 32(x+y)-3
=\frac 12(x^3+y^3+3xy(x+y)) + \frac 32 (x+y) - 3 \\
=\frac 12(x^3+y^3-6) + \frac 32 (xy + 1)(x+y)
= 0
\)

We have the freedom to pick $y$ arbitrarily and we pick $y$ such that \( xy+1=0 \Rightarrow y=-\frac 1x \).
It follows that:

\( x^3+y^3-6=x^3-x^{-3}-6=0 \Rightarrow (x^3)^2-6(x^3)-1=0
\Rightarrow x^3=3\pm\sqrt{10} \\
\Rightarrow x=\sqrt[3]{\sqrt{10}+3}\lor x=-\sqrt[3]{\sqrt{10}-3}
\)

Since the same solutions will hold if we had swapped $x$ and $y$, we can conclude that we can pick $x$ to be the first solution and $y$ to be the second solution.
Substituting gives us \( u=\frac 12\left(\sqrt[3]{\sqrt{10}+3} - \sqrt[3]{\sqrt{10}-3}\right) \approx 0.644\).I see some similarity between both methods and I'm still wondering how close they are. (Thinking)
Brilliant, I like Serena! Your solution in (2). is new to me. Very nice indeed. Thankyou for your participation!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
32
Views
3K
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K