Solve the cubic equation 4u^3+3u−3=0

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Cubic
Click For Summary
SUMMARY

The discussion focuses on solving the cubic equation 4u³ + 3u - 3 = 0 using two methods: the substitution u = sinh(x) and a direct approach without substitution. The participants express appreciation for the innovative solution presented in the second method. This highlights the versatility in solving cubic equations and the value of collaborative problem-solving in mathematics.

PREREQUISITES
  • Understanding of cubic equations and their properties
  • Familiarity with hyperbolic functions, specifically sinh
  • Basic algebraic manipulation skills
  • Knowledge of substitution methods in solving equations
NEXT STEPS
  • Research hyperbolic functions and their applications in solving equations
  • Explore alternative methods for solving cubic equations, such as Cardano's method
  • Study the graphical representation of cubic functions to understand their behavior
  • Learn about numerical methods for approximating roots of polynomial equations
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in advanced problem-solving techniques for polynomial equations.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Given the depressed cubic equation:

$4u^3+3u-3 =0$(1). Solve the equation with the substitution: $u = \sinh x$.

(2). Solve the equation without this substitution.
 
Mathematics news on Phys.org
My solution:

(1)

\(
4u^3+3u-3=4\sinh^3 x+3\sinh x -3
=\frac 4{2^3}(e^{x}-e^{-x})^3+\frac 32(e^{x}-e^{-x}) -3 \\
=\frac 12(e^{3x}-3e^{x}+3e^{-x}-e^{-3x}) + \frac 32(e^{x}-e^{-x}) -3
=\frac 12(e^{3x}-e^{-3x}) -3 = \sinh(3x) - 3 =0
\)

So $x=\frac 13\arsinh(3)$.
And $u=\sinh(\frac 13\arsinh(3))\approx 0.644$.(2)

Define $u=\frac 12(x+y)$.
Then:

\(
4u^3+3u-3
=\frac{4}{2^3}(x+y)^3+\frac 32(x+y)-3
=\frac 12(x^3+y^3+3xy(x+y)) + \frac 32 (x+y) - 3 \\
=\frac 12(x^3+y^3-6) + \frac 32 (xy + 1)(x+y)
= 0
\)

We have the freedom to pick $y$ arbitrarily and we pick $y$ such that \( xy+1=0 \Rightarrow y=-\frac 1x \).
It follows that:

\( x^3+y^3-6=x^3-x^{-3}-6=0 \Rightarrow (x^3)^2-6(x^3)-1=0
\Rightarrow x^3=3\pm\sqrt{10} \\
\Rightarrow x=\sqrt[3]{\sqrt{10}+3}\lor x=-\sqrt[3]{\sqrt{10}-3}
\)

Since the same solutions will hold if we had swapped $x$ and $y$, we can conclude that we can pick $x$ to be the first solution and $y$ to be the second solution.
Substituting gives us \( u=\frac 12\left(\sqrt[3]{\sqrt{10}+3} - \sqrt[3]{\sqrt{10}-3}\right) \approx 0.644\).I see some similarity between both methods and I'm still wondering how close they are. (Thinking)
 
I like Serena said:
My solution:

(1)

\(
4u^3+3u-3=4\sinh^3 x+3\sinh x -3
=\frac 4{2^3}(e^{ix}-e^{-ix})^3+\frac 32(e^{ix}-e^{-ix}) -3 \\
=\frac 12(e^{3ix}-3e^{ix}+3e^{-ix}-e^{-3ix}) + \frac 32(e^{ix}-e^{-ix}) -3
=\frac 12(e^{3ix}-e^{-3ix}) -3 = \sinh(3x) - 3 =0
\)

So $x=\frac 13\arsinh(3)$.
And $u=\sinh(\frac 13\arsinh(3))\approx 0.644$.(2)

Define $u=\frac 12(x+y)$.
Then:

\(
4u^3+3u-3
=\frac{4}{2^3}(x+y)^3+\frac 32(x+y)-3
=\frac 12(x^3+y^3+3xy(x+y)) + \frac 32 (x+y) - 3 \\
=\frac 12(x^3+y^3-6) + \frac 32 (xy + 1)(x+y)
= 0
\)

We have the freedom to pick $y$ arbitrarily and we pick $y$ such that \( xy+1=0 \Rightarrow y=-\frac 1x \).
It follows that:

\( x^3+y^3-6=x^3-x^{-3}-6=0 \Rightarrow (x^3)^2-6(x^3)-1=0
\Rightarrow x^3=3\pm\sqrt{10} \\
\Rightarrow x=\sqrt[3]{\sqrt{10}+3}\lor x=-\sqrt[3]{\sqrt{10}-3}
\)

Since the same solutions will hold if we had swapped $x$ and $y$, we can conclude that we can pick $x$ to be the first solution and $y$ to be the second solution.
Substituting gives us \( u=\frac 12\left(\sqrt[3]{\sqrt{10}+3} - \sqrt[3]{\sqrt{10}-3}\right) \approx 0.644\).I see some similarity between both methods and I'm still wondering how close they are. (Thinking)
Brilliant, I like Serena! Your solution in (2). is new to me. Very nice indeed. Thankyou for your participation!
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
32
Views
3K
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K