It's messy, but I believe you can separate the variables...
$\displaystyle \begin{align*} y\,\frac{\mathrm{d}^2y}{\mathrm{d}x^2} &= 2\,x\,\left( \frac{\mathrm{d}y}{\mathrm{d}x} \right) ^2 \\ \frac{1}{\frac{\mathrm{d}y}{\mathrm{d}x}}\,\frac{\mathrm{d}^2y}{\mathrm{d}x^2} &= \frac{2\,x}{y}\,\frac{\mathrm{d}y}{\mathrm{d}x} \\ \frac{1}{t}\,\frac{\mathrm{d}t}{\mathrm{d}x} &= \frac{2\,x}{y}\,\frac{\mathrm{d}y}{\mathrm{d}x} \textrm{ with } t = \frac{\mathrm{d}y}{\mathrm{d}x} \\ \int{ \frac{1}{t}\,\frac{\mathrm{d}t}{\mathrm{d}x} \,\mathrm{d}x } &= \int{ \frac{2\,x}{y}\,\frac{\mathrm{d}y}{\mathrm{d}x} \,\mathrm{d}x} \\ \int{ \frac{1}{t}\,\mathrm{d}t} &= \int{ 2\,x\, \frac{1}{y}\,\frac{\mathrm{d}y}{\mathrm{d}x}\,\mathrm{d}x} \\ \ln{ \left| t \right| } + C_1 &= \int{ 2\,x\,\frac{1}{y}\,\frac{\mathrm{d}y}{\mathrm{d}x} \, \mathrm{d}x} \end{align*}$
For the RHS we use IBP with $\displaystyle \begin{align*} u = 2\,x \implies \mathrm{d}u = 2\,\mathrm{d}x \end{align*}$ and $\displaystyle \begin{align*} \mathrm{d}v = \frac{1}{y}\,\frac{\mathrm{d}y}{\mathrm{d}x}\,\mathrm{d}x = \frac{1}{y}\,\mathrm{d}y \implies v = \ln{|y|} \end{align*}$ and we have
$\displaystyle \begin{align*} \ln{ \left| t \right| } + C_1 &= 2\,x\ln{ \left| y \right| } - \int{ 2\ln{ \left| y \right| }\,\mathrm{d}x } \\ \ln{ \left| \frac{\mathrm{d}y}{\mathrm{d}x} \right| } + C_1 &= 2\,x\ln{ \left| y \right| } - \int{ 2\ln{ \left| y \right| } \,\mathrm{d}x } \end{align*}$
I am unsure how to continue...