Natchanon said:
Homework Statement: An inertial frame F' moves in the x direction with speed v = 0.9c relative to another frame F. A traveler is moving with velocity u' = 0.5c i + 0.5c j in the frame F'. Determine the traveler's velocity in the frame F.
Homework Equations: u_parallel = (u_parallel' + v)/(1+vu_parallel'/c^2)
u_perpen = u_perpen'/gamma(1+vu_perpen'/c^2)
I wonder if I can use velocity four-vectors to solve this problem.
Thanks to the teachings in above posts. Let me try answer it.
Suppose Lorentz transformation the matrix of which is
\left( \begin{array}{cccc}<br />
<br />
A'^0 \\ A'^1 \\ A'^2 \\ A'^3 \\<br />
<br />
\end{array} \right)=<br />
<br />
\begin{pmatrix}<br />
<br />
\gamma_u & 0 & 0 & -\gamma_u u \\<br />
<br />
0 & 1 & 0 & 0 \\<br />
<br />
0 & 0 & 1 & 0 \\<br />
<br />
-\gamma_u u& 0 & 0 & \gamma_u \\<br />
<br />
\end{pmatrix}<br />
<br />
\left( \begin{array}{cccc}<br />
<br />
A^0 \\ A^1 \\ A^2 \\ A^3 \\<br />
<br />
\end{array} \right)<br />
<br />
=<br />
<br />
\left( \begin{array}{cccc}<br />
<br />
\gamma_u A^0 - \gamma_u u A^3 \\ A^1 \\ A^2 \\ -\gamma_u u A^0 + \gamma_u A^3 \\<br />
<br />
\end{array} \right)<br />
<br />
where velocity is non dimension for divided by c. I can set z-axis be the direction of boost without losing generality. x, y components do not change.
Let A be four velocity of a moving body
<br />
<br />
\left( \begin{array}{cccc}<br />
<br />
A^0 \\ A^1 \\ A^2 \\ A^3 \\<br />
<br />
\end{array} \right)<br />
<br />
=<br />
<br />
\left( \begin{array}{cccc}<br />
<br />
\gamma_v \\ \gamma_v v_x \\ \gamma_v v_y \\ \gamma_v v_z \\<br />
<br />
\end{array} \right)
\left( \begin{array}{cccc}A'^0 \\ A'^1 \\ A'^2 \\ A'^3 \\\end{array} \right)=<br />
\left( \begin{array}{cccc}\gamma_u \gamma_v (1-uv_z) \\<br />
<br />
\gamma_v v_x \\<br />
<br />
\gamma_v v_y \\<br />
<br />
\gamma_u \gamma_v (-u+v_z) \\\end{array} \right)= \ \gamma_u \gamma_v (1-uv_z)\left( \begin{array}{cccc}1 \\<br />
<br />
\frac{v_x}{\gamma_u (1-uv_z)} \\<br />
<br />
\frac{v_y}{\gamma_u (1-uv_z)} \\<br />
<br />
\frac{ -u+v_z}{{1-uv_z}} \\\end{array} \right)Usual expression of velocity addition rule appears.
Numerator comes from Lorentz transformation of z component.
Denominator comes from Lorentz transformation on t component.
Product ##u v_z## originates from Lorentz transformation of four velocity. One from Lorentz transformation coefficient and the other come from four velocity component.
x and y components of four velocity are invariant by Lorentz transformation, but actual speed is reduced by denomination factor ##\gamma_u (1-uv_z)##. It is due to change of ##\gamma## from ##\gamma_v## to ##\gamma_u (1-uv_z)\gamma_v## by the Lorentz trarnsformation.