Solving 0=-4sin(t)+\frac{5}{2}e^{\frac{-t}{2}}: Manual or Mathematica?

b2386
Messages
34
Reaction score
0
Hi all,

Just a quick question that is part of a differential equations problem. Can 0=-4sin(t)+\frac{5}{2}e^{\frac{-t}{2}} be solved for t by hand or should I use Mathematica?

Thanks
 
Physics news on Phys.org
Basically yours asking is there an analytical solution to 64 (\sin^2 x) (e^x) -25=0 Nope...If you want to do it by hand, Newtons method, or more complex, algebraic manipulations with the Taylor series of the functions, neither of which will get you exact answers, but can get you arbitrarily close answers, depending on how long you want to spend...
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top