Solving 4th Order Polynomials: Methods and Tips for Finding Roots

  • Thread starter Thread starter rlspin
  • Start date Start date
  • Tags Tags
    Polynomials
rlspin
Messages
6
Reaction score
0
Hey everyone

Im doing control engineering and was wondering what methods i could use to find the roots of a 4th order polynomial?

For example:

(x^4) + (8x^3) + (7x^2) + 6x = 5

Could I separate that into two brackets of quadratics or will i need to use a really long winded method?

Thanks in advance for any help
 
Physics news on Phys.org
'order'? You mean 'degree'! Well yes there is a solution for it but it is indeed long winded. You can try to find easy solutions by try. Else use Maple or Matlab.
 
A formula exists for 4 degree polynomials analogously to the quadratic formula, but it is very long and complicated and coding it into a program would take too much time. Just numerically approximate all the roots.
 
Sorry, i do mean degree! Slipped up cos I am working with a 4th order system.
I was worried id have to do it the long way.
I did use Matlab but wanted to see if I could work out the answer by hand.
Anywat, thanks for the help guys. I really appreciate it!
 
rlspin said:
Hey everyone

Im doing control engineering and was wondering what methods i could use to find the roots of a 4th order polynomial?

For example:

(x^4) + (8x^3) + (7x^2) + 6x = 5

Could I separate that into two brackets of quadratics or will i need to use a really long winded method?

Thanks in advance for any help
also check this website

http://xrjunque.nom.es/precis/rootfinder.aspx
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top