chwala
Gold Member
- 2,827
- 415
Homework Statement
Solve ##{dy/dx}-2xy=2x##
Homework Equations
The Attempt at a Solution
Let ##P= -2x ## and Q= 2x,
Integrating factor =## e^{-x^2} ##
##y.e^{-x^2} = ∫ 2x.e^{-x^2} dx##
##y.e^{-x^2}={x^2} e^{-x^2}+∫ 2{x^3} e^{-x^2}dx##
since ##y.e^{-x^2} = ∫ 2x.e^{-x^2} dx##
then ##y.e^{-x^2}={x^2}e^{-x^2}+{x^2}.y.e^{-x^2}## dividing through by ##e^{-x^2}, ## we have
##y={x^2}+{x^2}y.##
##y= {x^2}({1+y})##
now textbook says answer is ##y+1=c{x^2} ## where have i gone wrong?
Last edited: