- #1
zinDo
- 2
- 0
I want to solve Equation (1). w is a constant:
\begin{eqnarray} \text{Equation (1): }\frac{dx}{dt}=1+x^2w^2\end{eqnarray}
and I have been told that it is solved by (2):
\begin{eqnarray} \text{Equation (2): }x(t)=\frac{Ax(0)+B}{Cx(0)+D}\end{eqnarray}
Problem
I believe them, but before I keep solving it I want to know how one concludes that (1) is solved by (2). In order to get (2), should I integrate something like (3)? Is it some kind of ansatz that I should have known? ...
\begin{eqnarray} \text{Equation (3): }\frac{dx}{1+x^2w^2}=dt\end{eqnarray}
I don't know what is it that I should be looking for. Could I get a clue?
Thank you very much
\begin{eqnarray} \text{Equation (1): }\frac{dx}{dt}=1+x^2w^2\end{eqnarray}
and I have been told that it is solved by (2):
\begin{eqnarray} \text{Equation (2): }x(t)=\frac{Ax(0)+B}{Cx(0)+D}\end{eqnarray}
Problem
I believe them, but before I keep solving it I want to know how one concludes that (1) is solved by (2). In order to get (2), should I integrate something like (3)? Is it some kind of ansatz that I should have known? ...
\begin{eqnarray} \text{Equation (3): }\frac{dx}{1+x^2w^2}=dt\end{eqnarray}
I don't know what is it that I should be looking for. Could I get a clue?
Thank you very much