As I said, it is the chain rule. We have r= \sqrt{x^2+ y^2+ z^2} so that \partial r/\partial x= x(x^2+ y^2+ z^2)^{-1/2}= x/r, \partial r/\partial y= y(x^2+ y^2+ z^2)^{-1/2}= y/r, \partial r/\partial z= z(x^2+ y^2+ z^2)^{-1/2}= z/r. So grad r= (xi+ yj+ zk)/r.
If we write \vec{A(r)}= A_1(r)i+ A_2(r)j+ A_3(r)k then d\vec{A(r)}/dr= (dA_1/dr) i+ (dA_2/dr)j+ (dA_3/dr)k and (d\vec{A})/dr\cdot grad r= (x(dA_1/dr)+ y(dA_2/dr)+ z(dA_3/dr))/r
On the left, div \vec{A(r)}= dA_1/dr+ dA_2/dr+ dA_3/dr= [(\partial A_1/\partial x)(\partial r/\partial x)+ (\partial A_1/\partial y)(\partial r/\partial y)+ (\partial A_1/\partial z)(\partial z/\partial r)]+ [(\partial A_2/\partial x)(\partial r/\partial x)+ (\partial A_2/\partial y)(\partial r/\partial y)+ (\partial A_2/\partial z)(\partial z/\partial r)]+ [(\partial A_3/\partial x)(\partial r/\partial x)+ (\partial A_3/\partial y)(\partial r/\partial y)+ (\partial A_3/\partial z)(\partial z/\partial r)]
Now use the fact that \partial x/\partial r= 1/(\partial r/\partial x)= r/x, \partial y/\partial r= r/y, and \partial z/\partial r= r/z.