Solving a First-Order DE: A Student's Struggle

  • Thread starter Thread starter nateshoe
  • Start date Start date
nateshoe
Messages
9
Reaction score
0
1. Homework Statement [/b]
y'=4x–y+4; y(0)=8

2. The attempt at a solution[/b]
This is simply a first-order DE
So:

y'+y=4x+4
P(x)=1
Q(x)=4x+4
p(x)=e^x
So that ends up being:

ye^x=(4xe^x+4e^x)dx

Integration:
ye^x=4xe^x-4e^x+4e^x

ye^x=4xe^x
divide by e^x
y=4x+C
y=4x+8


However it tells me I'm wrong. either I'm very stupid or I'm going about this completely wrong.

Thanks,
Nate
 
Physics news on Phys.org
note after the integration, you pick up a constant
y e^x = 4 x e^x + C
 
Appreciate it!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top