manenbu
- 101
- 0
Homework Statement
Solve:
(x^2-1)y'' + 4xy' + 2y = 6x, given that y_1=\frac{1}{x-1} and y_2=\frac{1}{x+1}.
Homework Equations
The Attempt at a Solution
Since both solutions are given, the solution to the homogenous system is:
y_h=C_1\frac{1}{x-1} + C_2\frac{1}{x+1}
And the solution to the original equation would be:
y=C_1(x)\frac{1}{x-1} + C_2(x)\frac{1}{x+1}
To solve I use this system of equations:
C_1'(x)\frac{1}{x-1} + C_2'(x)\frac{1}{x+1} = 0
-C_1'(x)\frac{1}{(x-1)^2} - C_2'(x)\frac{1}{(x+1)^2} = 6x
Somehow, all of this should end up being: y=\frac{C_1}{x-1} + \frac{C_2}{x+1} + x, according to the answers, but I just can't get there. Was there anything wrong in the systems of equations? Or is it me solving for the constants (I didn't write it here)?