Solving a Homogenous ODE: Integrals Involved

  • Thread starter Thread starter Mechdude
  • Start date Start date
  • Tags Tags
    Integrals Ode
Mechdude
Messages
108
Reaction score
1

Homework Statement


the homogenous ode
(x^2+y^2)dy-y^2 dx =0


Homework Equations



v=\frac{y}{x}


The Attempt at a Solution


worked al the way here \int \frac {1}{v^2-v(1+v^2) }dv + \int\frac{v^2}{v^2- v(1+v^2)} = \int \frac {dx}{x}
how do i handle the integrals ?
 
Physics news on Phys.org
I would first put it back together again:
\int\frac}(1+ v^2)dv}{v^2- v- v^3}= -\int\frac{(1+ v^2)dv}{v(v^2- v+ 1)}
and, since it is a rational integral, use partial fractions.
 
The integral i get after getting partial fractions has me beat: i got A=1, B=-1
\int\frac {1}{-v}dv - \int\frac {1}{v^2-v+1} =\int \frac{dx}{x}
the second integral on the left is quadratic and irriducible how is it integrated?
 
Im thinking about completing the square thus the second integral on the left becomes:
- \int \frac{dv} {(v-\frac{1}{2} )^2 + \frac{3}{4} }
 
Last edited:
Yes, that's correct. An irreducible quadratic term can always be written as (v- a)^2+ b and then the substitution u= (v- a)/\sqrt{b} reduces it to (1/b)(1/(u^2+ 1)) and the integral is an arctangent.
 
Last edited by a moderator:
Thanks
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top