Solving a Nonlinear Differential Equation

mark126
Messages
5
Reaction score
0
URGENT: Differential Equation

Homework Statement


Use suitable substitutions to solve the following equation:

y' + xy = y^3


Homework Equations



dy/dx + P(x)y = Q(x)

I(x) = e^(integral(P(x)dx)

y = (Integral of(I(x)Q(x)))/I(x)

The Attempt at a Solution



dy/dx + xy = y^3

P(x) = x, Q(x) = y^3

I(x) = e^((x^2)/2)

y = (integral of (e^((x^2)/2))*y^3)/(e^((x^2)/2))

**This is not a multi-variable calculus class.
 
Physics news on Phys.org


Hello, my professor just replied regarding this question, I no longer need help. Thanks though!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top