Solving a Parabolic Bowl Oscillation Problem

  • Thread starter Thread starter jderm
  • Start date Start date
  • Tags Tags
    Oscillation
jderm
Messages
13
Reaction score
0

Homework Statement



Consider a particle moving back and forth on a frictionless parabolic bowl, y = ax2, where a = 1.460 m-1
If the particle is released from rest at the point on the
bowl at b = 0.43 m, find the period of the oscillations.

I have an equation for velocity(as a function of x). What i was thinking is that i could integrate this from -b to +b, and call this value 'v(x)*d', (it having units of m2/s.
since v=d/t, v(x)*d=d2/t.
thus t=d2/'v(x)*d'.
making the period, T=2*(d2/'v(x)*d'),
where d is the arc length of y(x), from -b to +b.

I realize this may be the least elegant and very possibly "physically incorrect", but it actually gave me a period very close to that obtained by the 'small angle approximation' (however, incorrect)

Can anybody comment on this method?
 
Physics news on Phys.org
i guess the crux of my argument is whether the area under the v(x) curve can be used in this manner, comments?
 
The acceleration and velocity are not at all constant, so the method is, mathematically speaking, completely wrong.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top