Solving a Piecewise Schrodinger equation

cc94
Messages
19
Reaction score
2

Homework Statement


I was trying to solve the time-independent Schrodinger's equation for this well: http://i.imgur.com/C9QrvkX.png
First I tried to look at cases where the energy of a particle is ##E < V_1##.

Homework Equations


Schrodinger's equation:
$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x) - V(x)\psi(x) = E\psi(x)$$

The Attempt at a Solution


I thought the normal way to deal with these square barriers is to break the equation up piece-wise and then match the conditions at the boundary. But in region III, there's a problem. Schrodinger's equation requires an exponential solution because ##V_1>E##. The wave function is

$$\psi_{III} (x) = Fe^{-\mu x} + Ge^{\mu x},$$

where ##\mu = \frac{\sqrt{2m(V_1-E)}}{\hbar}##. But the boundary condition requires that at ##x = a_3##, ##\psi_{III} (a_3) = 0##. This isn't possible unless either F = G = 0, or the wave function is actually a sin/cos wave function here. What am I missing?
 
Physics news on Phys.org
cc94 said:
But the boundary condition requires that at ##x = a_3##, ##\psi_{III} (a_3) = 0##. This isn't possible unless either F = G = 0, or the wave function is actually a sin/cos wave function here. What am I missing?
Are you sure? How about ##F=\exp \mu a_3## and ## G=-\exp -\mu a_3##?
 
Doh, I didn't think hard enough. Thanks
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top