Solving a Square Root Equation with Fractional Coefficients

  • Thread starter Thread starter Quinn Morris
  • Start date Start date
  • Tags Tags
    Roots Square
AI Thread Summary
The discussion focuses on solving the equation 5/√(7 + 3√x) = √(7 - 3√x). Participants suggest squaring both sides to eliminate the square roots, followed by cross-multiplication. The correct simplification leads to the equation 25 = 49 - 9x, which can be solved for x. After solving, x = 8/3 is found, but participants emphasize the importance of checking for extraneous solutions due to the squaring process. The conversation highlights the need for careful manipulation of square roots and the significance of verifying final answers.
Quinn Morris
Messages
14
Reaction score
0

Homework Statement


\frac{5}{\sqrt{7+3\sqrt{x}}} = \sqrt{7 -3\sqrt{x}}


Homework Equations



none

The Attempt at a Solution


does this equal 5 = 7 - 3\sqrt{x}
 
Physics news on Phys.org
i cross multiplied, but I'm a little iffy on my FOIL technique when square roots are throw into the mix
 
First square both sides and then cross multiply. That's what i'd do.
 
5 = sqrt (49 - 9x - 42 sqrt x)
25 = 49 - 9x - 42 sqrt x
24 = 9x + 42 sqrt x
The rest I leave it to you. You just have to square another time.
 
i don't understand how you got that could you explain it please?
 
lkh1986 said:
5 = sqrt (49 - 9x - 42 sqrt x)
25 = 49 - 9x - 42 sqrt x
24 = 9x + 42 sqrt x
The rest I leave it to you. You just have to square another time.

This term shouldn't be there. Check your signs.
 
Last edited:
okay so square both sides to get rid of the first square root sign then square again to get rid of the one on the "x" ?
 
Quinn Morris said:
i cross multiplied, but I'm a little iffy on my FOIL technique when square roots are throw into the mix

Square both sides (this gets rid of the "first set" of square roots). Then cross multiply. Expand the right hand side. Note your laws of exponents: so x^\frac{1}{2} * x^\frac{1}{2} = x ^ { \frac{1}{2} + \frac{1}{2}} = x^1 = x
 
okay I'm definitely lost now.

i have the stated question

i sqaure both sides, i get

\frac{25}{7 + 2((\sqrt{7})(\sqrt{3\sqrt{x}})) + 3\sqrt{x}} = 7 + 2((\sqrt{7})(\sqrt{-3\sqrt{x}})) + 3\sqrt{x}
 
  • #10
how can i cross multiply that without getting utterly lost?
 
  • #11
By square both sides, I mean


(\frac{5}{\sqrt{7+3\sqrt{x}}})^2 = (\sqrt{7 -3\sqrt{x}} )^2

This means squaring every term

\frac{5^2}{(\sqrt{7+3\sqrt{x}})^2} = (\sqrt{7 -3\sqrt{x}} )^2

Can you tell me what this is equivalent to: (\sqrt{x})^2? If you know this, then you will know how to make the above much easier to work with. Figure this out before you expand anything. See my laws of exponents remark.

By the way the curved brackets in the second equation go around the whole square root term. Hopefully it doesn't look too confusing to you.
 
Last edited:
  • #12
sqrt x squared is just X. but i get confused with the middle terms. I am going to try it later on when i have the time to, i'll get back to you
 
  • #13
Yes, that's right. So if you have

(\sqrt{7 -3\sqrt{x}} )^2

and apply that idea, what does this term become?
 
  • #14
The parentheses are peculiarly placed!
Multiplying
\frac{5}{\sqrt{7+3\sqrt{x}}}= \sqrt{7 -3\sqrt{x}}
on both sides by \sqrt{7+ 3\sqrt{x}} gives 5= \sqrt{(7- 3\sqrt{x})(7+ 3\sqrt{x})}= \sqrt{49- 9x}, because the product inside the squareroot is "sum times difference". Now squaring gives 25= 49- 9x. That should be easy to solve. Don't forget to check your answer- multiplying both sides by something involving x or squaring both sides can introduce "extraneous" solutions.
 
  • #15
c=8 i think
 
  • #16
x = 8/3 I think.
 
  • #17
Quinn Morris said:
c=8 i think
Since there isno "c" in the problem, I guess you missed the "x" key!
Unfortunately, with x= 8, the 7- 3\sqrt{8} is clearly negative and so cannot satisfy the equation.

epenguin said:
x = 8/3 I think.
Check it!
\frac{5}{\sqrt{7+ 3\sqrt{8/3)}}}= 1.4494897427831780981972840747059
while
\sqrt{7- 3\sqrt{(8/3)}}= 1.4494897427831780981972840747059
Looks good to me!

As I said before,
HallsofIvy said:
Multiplying
\frac{5}{\sqrt{7+3\sqrt{x}}}= \sqrt{7 -3\sqrt{x}}
on both sides by \sqrt{7+ 3\sqrt{x}} gives 5= \sqrt{(7- 3\sqrt{x})(7+ 3\sqrt{x})}= \sqrt{49- 9x}, because the product inside the squareroot is "sum times difference". Now squaring gives 25= 49- 9x. That should be easy to solve. Don't forget to check your answer- multiplying both sides by something involving x or squaring both sides can introduce "extraneous" solutions.
If 25= 49- 9x, the 9x= 49-25= 24 so x= 24/9= 8/3 as epenguin said. (But you should still check numerically.)
 
  • #18
lol i just rechecked my work and I'm an idiot. i had 24/9 but i divded both by 3 but the i just decided not to include the /3 part. lol @ me thanks for the help tho
 
Back
Top