Solving an AP Spring Problem: Get Answer in 16 cm

  • Thread starter Thread starter WrathofHan
  • Start date Start date
  • Tags Tags
    Ap Spring
AI Thread Summary
The discussion centers on a physics problem involving a spring and two blocks of different masses. A 3 kg block causes a spring to stretch 12 cm at equilibrium, and when replaced by a 4 kg block, the question is how far the block will fall before reversing direction. The initial calculations incorrectly identified the drop distance as 16 cm, which represents the new equilibrium position. The correct answer is 32 cm, as the block oscillates and falls an additional 16 cm below the equilibrium position due to the dynamics of simple harmonic motion. The problem can also be approached using conservation of energy principles.
WrathofHan
Messages
6
Reaction score
1
Right now I'm reviewing old AP problems for the AP exam for Physics B tomorrow, and I can't seem to get a simple spring problem. I don't know why, but I can't just grasp it. Here it is:

A block of mass 3kg is hung from a spring, causing it to stretch 12 cm at equilibrium, as shown above. The 3 kg block is then replaced by a 4 kg block, and the new block is released from the position shown above, at which the spring is unstretched. How far will the 4 kg block fall before its direction is reversed?

Here's my work(I'm allowed to use 10m/s^2 for gravity):
3kg(10m/s^2) + .12k = 0
.12k = 30
k = 250

250x - 4(10) = 0
x = .16 m = 16 cm

The answer I'm told is supposed to be 32... can someone explain what I'm doing wrong?
 
  • Like
Likes david55gou
Physics news on Phys.org
WrathofHan said:
Right now I'm reviewing old AP problems for the AP exam for Physics B tomorrow, and I can't seem to get a simple spring problem. I don't know why, but I can't just grasp it. Here it is:

A block of mass 3kg is hung from a spring, causing it to stretch 12 cm at equilibrium, as shown above. The 3 kg block is then replaced by a 4 kg block, and the new block is released from the position shown above, at which the spring is unstretched. How far will the 4 kg block fall before its direction is reversed?

Here's my work(I'm allowed to use 10m/s^2 for gravity):
3kg(10m/s^2) + .12k = 0
.12k = 30
k = 250

250x - 4(10) = 0
x = .16 m = 16 cm

The answer I'm told is supposed to be 32... can someone explain what I'm doing wrong?
What you found is the new *equilibrium position*. If the 4kg was slowly released so that it would not oscillate, this is where it will end up (try to visualize holding the mass and letting it go *very* slowly so that when you are not touching it anymore it remains at rest).

But in this question, the mass is dropped suddenly. So it oscillates. when it is released, it is 16 cm above its equilibrium position. This means that it will go all the way down to 16 cm *below* its equilibrium position before moving up again. So a total of 32 cm below its initial position
 
  • Like
Likes david55gou
nrqed said:
What you found is the new *equilibrium position*. If the 4kg was slowly released so that it would not oscillate, this is where it will end up (try to visualize holding the mass and letting it go *very* slowly so that when you are not touching it anymore it remains at rest).

But in this question, the mass is dropped suddenly. So it oscillates. when it is released, it is 16 cm above its equilibrium position. This means that it will go all the way down to 16 cm *below* its equilibrium position before moving up again. So a total of 32 cm below its initial position

In Physics B, would the max distance always be twice the equilibrium point?
 
WrathofHan said:
Right now I'm reviewing old AP problems for the AP exam for Physics B tomorrow, and I can't seem to get a simple spring problem. I don't know why, but I can't just grasp it. Here it is:

A block of mass 3kg is hung from a spring, causing it to stretch 12 cm at equilibrium, as shown above. The 3 kg block is then replaced by a 4 kg block, and the new block is released from the position shown above, at which the spring is unstretched. How far will the 4 kg block fall before its direction is reversed?

Here's my work(I'm allowed to use 10m/s^2 for gravity):
3kg(10m/s^2) + .12k = 0
.12k = 30
k = 250

250x - 4(10) = 0
x = .16 m = 16 cm

The answer I'm told is supposed to be 32... can someone explain what I'm doing wrong?
The potential energy of the 4 kg block is converted into potential energy of the spring.

mgx = \frac{1}{2}kx^2

So:

x = 2mg/k

x= 2*4*10/250 = .32

AM
 
WrathofHan said:
In Physics B, would the max distance always be twice the equilibrium point?
If the object is dropped (it has no initial velocity) then the distance from the highest point to the lowest point is twice the ditance between the highest point and the equilibrium position, yes (the mass follows simple harmonic motion, that is a cosine type of curve)

You can also solve the problem using conservation of energy as Andrew Mason posted (the equation he gave works because the initial and the final velocities are both zero in that example)
 
Cool, thanks, that helped a lot =)
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top